

VIRTUS Power Transmission

Lovejoy/Sier-Bath Gear Couplings

Lovejoy offers a variety of designs and models in its gear coupling family. From standard, off-the-shelf stock to new, high speed, special designs, Lovejoy can satisfy your gear coupling needs.

Continuous and Flanged Sleeve

The original Continuous Sleeve, or "C", coupling offers a lightweight, compact, and simple design without compromising torque carrying capacity. The Flanged Sleeve, or "F", coupling is available in exposed or shrouded bolt styles in which the number of bolts, size of bolts, and bolt circle are identical with industry standards. Within these two basic product lines, modifications and variations exist to serve a wide variety of applications such as extended distances between shaft ends, Mill Motors, limited end float, or vertical. Many designs can be created for unique applications as well.

CONTINUOUS SLEEVE GEAR COUPLING

FLANGED SLEEVE GEAR COUPLING

Î WARNING

You must refer to page iv for Important Safety Instructions and Precautions for the selection and use of these products. Failure to follow the instructions and precautions can result in severe injury or death.

Lovejoy/Sier-Bath Continuous Sleeve Series

Absorbs Misalignment, End-Float

The basic principle of the Lovejoy/Sier-Bath Gear Coupling is similar to that of conventional flexible gear couplings. While it is desirable to align shafts as accurately as possible, the purpose of any flexible coupling is to absorb probable misalignment (angular and offset), and end-float. The Lovejoy/ Sier-Bath Coupling accomplishes this through the rocking action of the hubs in the sleeve.

Simplified Method of Closure

The essential difference between the Lovejoy/Sier-Bath Coupling and conventional types is its simplified design. This is made possible by the advanced assembly and lubrication sealing arrangement, which eliminates the need for cumbersome flanges, bolts and nuts. BUNA N lubrication seals and steel snap rings hold in the lubricant and provide the means of assembly.

Standard Types and Sizes

Lovejoy/Sier-Bath Couplings are stocked in Standard, Mill Motor, Vertical, Floating Shaft and Spacer Types—sizes 7_8 to 12, to accommodate bores up to 12.50". Load capacities range from 4 to 4,000 HP per 100 RPM.

Special Types and Sizes

Many special types have been manufactured, such as Brakedrum Type, Sliding Hub Type, Jordan Type, etc. Specifications on sizes larger than standard are available. Size range is virtually unlimited. Exceptional simplicity makes great design flexibility possible. Unusual requirements can also be met.

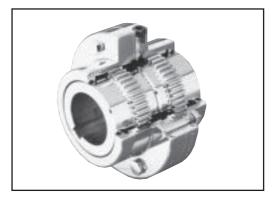
Features and Benefits of Continuous Sleeve Type Couplings

- Simple and inexpensive type of gear coupling.
- All steel sleeves and hubs.
- Reinforced rubber seals with steel snap rings to hold lubricant in place.
- Available as vertical and horizontal couplings.
- Wide variety of special variations available such as full-flex, flex-rigid, mill motor, floating shaft and spacer types.
- Standard configurations are available off-the-shelf.

Two Hubs — One Sleeve

Major components are machined from medium carbon steel. Gear teeth are precision cut 20° pressure angle with minimum backlash and are smaller for even distribution of load, greater capacity, and longer life. Interference fit on bore is standard.

Two Seals


The seals are made of BUNA N with two reinforcing washers bonded to the inside faces which positively retain lubricant and seal interior against foreign matter. Seals are patented Lovejoy/Sier-Bath design and are tested.

Two Snap Rings

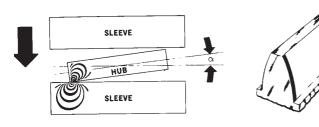
The spiral wound rings are made of oil hardened spring steel and securely hold the coupling together. Each ring is simple to install and remove yet withstands over 100,000 pounds of end-thrust.

Lovejoy/Sier-Bath Flanged Sleeve Series Misalignment and End-Float Capability

The Lovejoy/Sier-Bath Flanged Sleeve gear coupling is a flexible coupling that compensates for angular misalignment, parallel misalignment, and end float. Angular and parallel misalignment, and combinations thereof, will result in angular misalignment at the gear mesh. Lovejoy/Sier-Bath Flanged Sleeve couplings can accommodate $11/2^{\circ}$ of relative angular misalignment in each gear mesh up to size 51/2. Sizes 6 and larger can accommodate $3/4^{\circ}$ of angular misalignment at each gear mesh. The hub teeth are fully crowned to provide for a larger contact area and lower stresses under misaligned conditions. The crowned tooth design also avoids the end loading that occurs on straight teeth under misalignment.

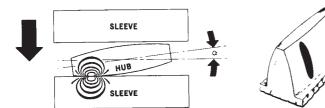
Features and Benefits of Flanged Sleeve Couplings

- Patented Vari-Crown® tooth form for long life.
- Standard 20° pressure angle.
- Heat treated bolts for greater strength.
- Bolts and nuts are coated for corrosion resistance and ease of maintenance.
- Interchangeable with industry standards.
- Large bore and torque capacities.
- Piloted gear fit for higher speeds and less vibration.
- Interference fit on bore is standard.

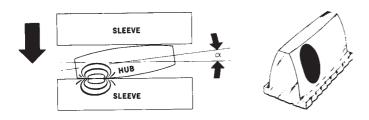

Standard and Special Types and Sizes

The standard Flanged Sleeve series is offered in exposed and shrouded bolt patterns through size 5½. The exposed bolt pattern is available for sizes larger than size 6. It has the same number of bolts, size of bolts, and bolt circle as industry standards up to size 7. Heat treated bolts are plated for corrosion resistance.

Modifications and variations of the standard Flanged Sleeve coupling exist to suit specific or unique applications. Sizes can go as large as size 30 which can accommodate up to 54" bores. Insulated couplings, Jordan types, extended slide, vertical, brakedrum, and continuously lubricated are some of the special designs that can be made.



Vari-Crown Tooth Form



With straight hub teeth, there is a high concentration of load under misaligned conditions. As misalignment increases, more of the load is carried by the ends of the teeth, resulting in premature breakdown and coupling failure.

Conventional Crown

Some manufacturers use a conventionally crowned hub tooth known by various trade names. Regardless of the nomenclature, however, the contour of the tooth is a segment of an arc. Under all operating conditions, equal or similar contact areas between the hub teeth and the sleeve teeth exist.

Patented Vari-Crown Tooth Form for Long Life Facts

- It can be shown¹ that bodies with the smallest relative curvature have the largest area of contact under load, or specifically, a body with the largest radius of curvature has the largest area of contact with another body when under load. More importantly, under a given load the bodies with the greater radii of curvature have lower induced surface contact stresses.
- Gear tooth couplings have fewer teeth in contact as misalignment increases.

Lower Stresses

Lovejoy/Sier-Bath's solution to these facts was the development of the patented Vari-Crown tooth form. The Vari-Crown tooth form is a curve with constantly changing radii of curvature. The tooth contact area under misaligned conditions has a much larger radius of curvature than conventional crowning. The contact area is larger, thus reducing the unit stress.

Lovejoy/Sier-Bath Vari-Crown

The Sier-Bath Vari-Crown tooth form has a crown at the center of the tooth which is similar to a conventionally crowned tooth coupling. However, as soon as misalignment occurs, the transmitted torque is carried on a flattened area of the hub tooth which is considerably broader and stronger than the conventionally crowned tooth form. Note the larger contact area and reduced stress area of the Vari-Crown tooth form.

Constant Velocity Power Transmission

Lovejoy/Sier-Bath produces the Vari-Crown tooth form by a generating method maintaining the necessary characteristics for conjugate tooth action, which are:

- 1. Constant normal base pitch at any position on the crowned teeth.
- 2. Correct pressure angle matching of the normal to the curved surface and the sleeve surface at any position of misalignment.

Less Backlash

The tooth design requires less backlash for a given angle of misalignment than the conventional or circular arc crown. In many applications this is a desirable feature in a gear tooth coupling.

VIRTUS Power Transmission

Gear Coupling Selection Process

Factors Affecting Selection

Following is a list of factors that may have to be considered. No priority can be put on these factors. Factors have to be weighed based on specifications and what is technically, environmentally, and economically feasible.

Only a few of these factors will come into play on any one application. Adaptability — Special

- Interchangeability with other brands.
- modifications. Axial freedom or axial restrictions. Special seals.
- Bore size capacity. Torque capacity.
- Maximum speed capacity.
- Special balancing.
- High or low temperature. requirements.
 - Chemical resistance.

serviceability.

- Previous purchase history. Ease of installation. Ease of maintenance and
- Availability.

Alignment requirements.

Weight or low inertia.

Rebore capability.

Finding the Right Type of Coupling

For any one application you will find that only a few of the factors listed will have a high priority. List those priorities. This will be very helpful in picking the right type of coupling.

Selection of Type

Refer to Gear Coupling Selection Charts shown on pages G-15 through G-17. These charts summarize all Lovejoy Gear Coupling products and show individual product capacities. List the factors that are most important to selection of the right type of coupling. By the process of elimination you will eliminate those types that do not apply to the application. Here are a few examples.

- 1. If an exact retrofit is required all other types of couplings are eliminated from contention.
- 2. A retrofit or a close proximity will narrow the choices.
- 3. High Speed requirements eliminate all non high speed couplings or those that cannot be balanced for the RPM required.
- 4. Spacer or floating shaft couplings eliminate all other types.
- 5. Torque or HP/100 RPM requirements sometimes eliminate certain coupling types. For instance, if the application has a required torque of 2,000,000 inch pounds, smaller capacity coupling types would not be considered.

Selection of Size

Once the best type has been chosen then the coupling size is determined. Make a list of the physical attributes required, using the following list as a quideline:

- Bore and Keyway
- Bore tolerances if specified
- Nominal torque
- Peak torque a) at startup b) during operation.
- HP/100 RPM required
- Nominal RPM
- Balance tolerances if specified
- Shaft separation-BSE
- Driven equipment description, for use in applying a service factor.
- Shrouded or exposed bolts
- For modified or engineered couplings more information has to be recorded. Please consult Lovejoy Engineering.

Application Service Factors

No additional service factor should be applied if the driver side input HP or torque has already compensated for the load characteristics. By knowing the actual torgue load we can compare this with the driver side torgue available. If there is enough service factor applied to the driver side then match the coupling torque to the driver torque. This may be especially important if the coupling is being used between a speed reducer and the driven machine.

After the torque or horsepower is known, a service factor may have to be applied. Refer to page G-14 for the Gear Coupling Application Service Factors chart.

Application service factors are applied in order to give reasonably good life to the coupling to prevent premature wear of gear teeth and do not guarantee that the coupling will last indefinitely. Application service factors cannot compensate for poor alignment, improper selection or overlooked environmental conditions. No amount of application service factor can compensate for having selected the wrong size of coupling.

Step by Step Procedure

Having considered the preceding, the selection process steps are:

- 1. Choose the gear coupling series and type that meets the application requirement.
- 2. Determine the nominal torque in in-lbs of your application by using the following formula:

Nominal Torque = in–lb = (HP x 63025)

Ν

	RPM	
lm =	(KW x 9550)	
	RPM	

- 3. Find the application in the Application Service Factor chart. Multiply the nominal torque by the application service factor to determine the total required torque.
- 4. Compare the required torque to the maximum torque capacity found in the Gear Coupling Selection chart for the coupling type selected.
- 5. Check that the maximum bore size and the maximum RPM of the coupling type selected are capable of meeting the application requirements.
- 6. Specify any special requirements. This includes the BSE dimension for floating shaft and spacer types, shear pin torque, slide coupling detail, and mill motor tapered shaft data.

Lovejoy Engineering will assist with any application problem.

VIRTUS Power Transmission

Gear Coupling Examples

Selection Example 1: Flanged Coupling

The application is a 400 HP electric motor driving a high pressure centrifugal water pump. RPM is 3600. The motor shaft is 2.375". Pump shaft is 2.875". A flange type coupling is requested.

- Step 1: Since a flange type is specified, this eliminates the "C" series. Choose the "F" series.
- Step 2: Refer to pages G-20 and G-21 for Flanged Series Double Engagement coupling information. Review of the bore size compatibility shows that Size F 2½ is requested to accommodate a 2.875" shaft requirement.
- Step 3: Using the Application Service chart on page G-14, notice that the application service factor for centrifugal pumps is 1.0.
- Step 4: Check the power capacity. Find the HP/100 RPM required for 400 HP at 3600 RPM.

$$\frac{\text{HP}}{100 \text{ RPM}} = \frac{\text{HP x 100}}{\text{RPM}}$$

$$\frac{\text{HP}}{100 \text{ RPM}} = \frac{400 \times 100}{3600} = 11.11$$

The size F 21/2 is rated at 90 HP/100 RPM. The coupling may seem too large, but it is needed to accommodate the maximum shaft size of 2.875".

- Step 5: Check the RPM. Size F 21/2 is rate for 4400 RPM Max.
- Step 6: Specify any special requirements, such as shaft fit, coatings, etc.
- Step 7: Referring to the Gear Coupling Selection chart, the code for this coupling is F (size). Specify F 2½ and give the bore and keyway data. All couplings in this series are made with an interference fit in the bore unless otherwise specified.

Selection Example 2: Spacer Coupling

Assume the same conditions as Example 1 except that a spacer type coupling is required, with a 7" spacer, or dropout. Follow steps 1 through 4, as in example 1, arriving at an "F" type spacer coupling. See pages G-42 for F type spacer couplings.

- Step 5: Check the maximum RPM. This must be submitted to engineering to check the critical frequency for 3,600 RPM operation.
- Step 6: Special requirements are the length of the spacer, S=7". Note that the BSE dimension is going to be greater than the S dimension.

BSE = S + 2R = 7 + 2 x .094 = 7.188"

If the BSE was given as 7" then the actual drop out would have been only 7 - 2 x .094 or 6.812. Always be sure that the coupling selected provides for the actual BSE needed.

Step 7: Referring to the Gear Coupling Selection chart, page G-16, the code for a Flanged Series Spacer Coupling is FSPCR. Specify the spacer or BSE dimension needed, the bore and keyway data and the RPM, plus any other special conditions.

Selection Example 3: Floating Shaft Coupling

The application requires a test stand dynamometer to be driven by a DC motor. The products tested are subject to occasional shock load of not more that 2x running torque and not more often than four times an hour. Design HP 1440 at 1000 RPM, with 3000 RPM maximum. The shafts are 20" apart (BSE) and shaft sizes are 4.000" and 3.500". The outside diameter cannot exceed 10", and must be greased packed.

- **Step 1:** Since there is a 20" BSE, this calls for a floating shaft type of coupling.
- **Step 2:** Refer to pages G-20, G-21, and G-36 for Flanged Series Floating Shaft coupling information for a review of bore sizes available.
- **Step 3:** Note that the rigid half of the original coupling mounts on the shafts, and that the maximum bore of the rigid half is greater than that of the flex half. Maximum bore of the size 2½ is 4.250" (rigid); the OD is 8.38".

Determine the HP/100 RPM for the application.

$$\frac{HP}{100 \text{ RPM}} = \frac{HP \times 100}{\text{RPM}}$$
$$\frac{HP}{100 \text{ RPM}} = \frac{1440 \times 100}{1000} = 144$$

No service factor is listed for dynamometer drives, but the shock load is not high and is infrequent and probably not a a factor in the life of the coupling. Therefore, selection will be based on the 144 HP/100 RPM.

- Step 4: The size 2½ is only rated for 90 HP/100 RPM. Therefore, size 3 with a rating or 150 HP/100 RPM is required. This has an OD of 9.44" (size 3½ with a 240 HP/100 RPM rating has an OD of 11").
- **Step 5:** Since the RPM peaks at 3000, and the BSE is 20", the application must be submitted to engineering.
- Step 6: State any special requirements.
- Step 7: Referring to the Gear Coupling Selection chart, the code for this coupling is FFS (size). Specify FFS 3 and give the bore and keyway data. All couplings in this series are made with an interference fit in the bore unless otherwise specified.

Lovejoy engineering will assist in any application problem.

Application Service Factors for Gear Couplings

Values contained in the table should be used as a general guide and are to be applied to smooth power sources such as electric motors and steam turbines. For drives involving internal combustion engines add 1.0 to the values listed.

Agitators
Pure Liquids 1.0
Liquids—Variable Density 1.0
Blowers
Centrifugal1.0
Lobe 1.2
Can Filling Machines1.0
Car Dumpers
Car Pullers, Intermittent Duty 1.5
Compressors
Centrifugal 1.0
Reciprocating 2.2
Multi-Cylinder 2.0
Single Cylinder 2.0
Conveyors, Uniformly Loaded or Fed
Assembly 1.2
Belt 1.2
Screw 1.2
Conveyors, Heavy Duty
Not Uniformly
Fed Assembly 1.5
Belt 1.5
Oven 1.5
Reciprocating2.0
Screw 1.5
Shaker 1.5
Cranes and Hoists
Main Hoists
Reversing
Skip Hoists
Trolley Drive 2.0
Bridge Drive
Crushers
Ore
Stone
Dredges
Conveyors
Cutter Head Drives
Maneuvering Winches
Pumps
Fans 10
Centrifugal1.0 Cooling Towers Forced Draft1.5
Feeders
Screw
Generators
Not Welding 1.0
5
Welding
Laundry Washers
Reversing
Lumber Industry
Barkers—Drum Type
Edger Feed 2.0
Live Rolls
Log Haul—Incline
Log Haul—Well Type 2.0
Off Bearing Rolls 2.0
Planer Feed Chains 1.75
Planer Tilting Hoist 1.75
Planer Floor Chains 1.75
Slab Conveyor

Sorting Table 1.5
Trimmer Feed 1.5 Machine Tools
Bending Roll
Punch Press, Gear Driven
Tapping Machines
Main Drives 1.5
Auxiliary Drives 1.5
Metal Mills
Draw Bench—Carriage
Draw Bench—Main Drive
Forming Machines 2.0
Slitters 1.5
Table Conveyors
Non-Reversing 2.25
Reversing 2.5
Wire Drawing &
Flattening Machine
Wire Winding Machine
Metal Rolling Mills
Blooming Mills 2.5
Dioutiling Wills
Coilers, hot mill
Coilers, cold mill 1.5
Cold Mills
Cooling Beds 1.75
Door Openers 2.0
Draw Benches 2.0
Edger Drives1.75
Feed Rolls, Reversing Mills 3.5
Furnace Pushers2.5
Hot Mills 3.0
Ingot Cars2.5
Kick-outs 2.5
Manipulators
Merchant Mills 3.0
Piercers
Pusher Rams 2.5
Reel Drives 1.75
Reel Drums
Reelers
Rod and Bar Mills
Roughing Mill Delivery Table 3.0
Runout Tables
Saws, hot & cold 2.5
Screwdown Drives
Skelp Mills
Slitters
Slabing Mills
Soaking Pit Cover Drives
Straighteners
Tables, transfer & runout 2.5
Thrust Block 3.0
Traction Drive
Tube Conveyor Rolls 2.5
Unscramblers 2.5
Wire Drawing 1.75
Mills, Rotary Type
Ball 2.25
Dryers & Coolers
Hammer 1.75
Kilns
Pebble & Rod 2.0

Dug 1 75
Pug
Tumbling Barrels
Mixers
Concrete Mixers, Continuous1.5
Concrete Mixers, Intermittent 2.0
Oil Industry
Oil Well Pumping 2.0
Rotary Kilns 2.0
Paper Mills
Agitators, Mixers
Barker Auxiliaries, Hydraulic
Barker Mechanical
Barking Drum Spur
Gear Only
Beater & Pulper 1.75
Bleacher 1.0
Calenders 2.0
Calenders, Super1.5
Chippers 2.5
Coaters 1.0
Converting Machines,
except Cutters, Platers 1.5
Conveyors1.5
Couch Roll 1.75
Cutters, Platters 2.0
Cylinders 1.75
Disc Refiners 1.75
Dryers
Felt Stretcher 1.25
Felt Whipper
Jordans 1.75
Line Shaft 1.5
Log Haul2.0
Pulp Grinder 1.75
Press Roll2.0
Reel 1.5
Stock Chests 1.5
Suction Roll 1.75
Washers & Thickeners 1.5
Winders 1.5
Printing Presses 1.5
Pumps
Centrifugal1.0
Reciprocating
Single Acting 3 or more
Cylinders 1.5
Double Acting 2 or more
Cylinders 2.0
Detery Coor Type Labo
Rotary, Gear Type, Lobe
Vane
Rubber Industry
Mixer 2.0
Rubber Calender 2.0
Screens
Rotary, Stone or Gravel 1.5
Steering Gear 1.0
Stokers 1.0
Textile Industry
Dryers 1.5
Dyeing Machinery1.5
Windlass

Lovejoy/Sier-Bath '	" C "	Continuous	Sleeve	Series
---------------------	--------------	------------	--------	--------

				Max.	Bore		Torque	Max.	Max. Angular	To	rque Ra	nge
Coupling Type	Code	Page No.	Size Range	inch	mm	Ca in-lb	pacity Nm	RPM	Misalignment (degrees)1	Low	Med	High
Standard	С		7/8	1.250	31	2,520	284.7	6,000	1°			
(Double Engagement)		G-26	12	12.500	330	2,520,000	284,746.0	550	1/2°	Х	Х	
Flex-Rigid	CFR		7/8	1.250	31	2,520	284.7	6,000	1/2°	Х		
(Single Engagement)		G-26	6	6.625	186	378,000	42,712.0	2,000	1/0°			
Mill Motor	CMM		7/8	1.250	31	2,520	284.7	6,000	1°			
		G-27	6	6.625	186	378,000	42,712.0	2,000	1/2°	Х		
Floating Shaft	CFS		7/8	1.250	31	2,520	284.7		1°			
		G-28	6	6.625	186	378,000	42,712.0	Note 2	1/2°	Х		
Spacer	CSPCR		7/8	1.250	31	2,520	284.7		1°			
		G-29	6	6.625	186	378,000	42,712.0	Note 3	1⁄2°	Х		
Cut-out	CCS		7/8	1.250	31	2,520	284.7	6,000	1°	Х		
		G-30	6	6.625	186	378,000	42,712.0	2,000	1/2°			
Shear Pin	CSHP		1½	1.250	31	Per Ci	ustomer	6,000	1°			
		G-31	6	6.625	186	Specif	ications	2,100	1⁄2°	Х		

Notes: 1. These are maximum values. For reasonable life expectancy and low reactionary loads, the misalignment

should not exceed $3\!\!\!/^\circ$ for small couplings and $1\!\!/^2^\circ$ for larger couplings.

2. The maximum RPM of a Floating Shaft coupling set may be determined by the critical speed of the floating shaft itself.

3. Maximum RPM may be determined by dimensions of spacer.

Lovejoy/Sier-Bath "F" Flanged Sleeve Series

				Мах	. Bore		. Torque	Max.	Max. Angular	То	rque Ra	nge
Coupling Type	Code	Page No.	Size Range	inch	mm	in-lb	apacity Nm	RPM	Misalignment (degrees)1	Low	Med	High
Standard	F		1	1.625	42	7,600	859	6,000	3°	X	Х	
(Double Engagement)		G-34	9	12.000	340	1,827,700	206,520	1,800	11/2°			
Standard	FHD		7	9.750	255	1,008,400	113,944	2,000				
Heavy Duty		G-35	30	45.500	1155 ⁴	47,269,000	5,341,130	220	11⁄2°		Х	Х
Flex-Rigid	FFR		1	1.625	42	7,600	859	6,000	11/2°			
(Single Engagement)		G-36-37	30	45.500	1155 ⁴	47,269,000	5,341,130	220	3/4°	Х	Х	Х
Floating Shaft	FFS		1	1.625	42	7,600	859	Note 2	3°	Х	Х	Х
Ū		G-36-37	30	45.500	1155 ⁴	47,269,000	5,341,130		11⁄2°			
Mill Motor	FMM		1	1.625	42	7,600	859	6,000	3°	X		
		G-38-39	6	8.000	225	750,000	87,746	2,100	11⁄2°			
Sliding Hub	FSL		1	1.625	42	7,600	859	6,000	3°	Х	Х	
0	FSLX	G-40-41	7	9.000	254	1,008,400	113,944	2,000	11⁄2°			
Spacer	FSPCR		1	1.625	42	7,600	859	Note 3	3°	Х	Х	
1		G-42	7	9.000	254	1,008,400	113,944		11/2°			
Rigid-Rigid	FRR		1	2.125	56	7.600	859	6,000		Х	Х	
<u></u>		G-44	7	11.250	318	1,008,400	113,944	2,000	0°			

Notes: 1. These are maximum values. For reasonable life expectancy and low reactionary loads the misalignment should not exceed 3/4° for small couplings and 1/2° for larger couplings.

2. The maximum RPM of a Floating Shaft coupling set may be determined by the critical speed of the floating shaft itself.

3. Maximum RPM may be determined by dimensions of spacer.

4. Consult Lovejoy Engineering for Metric Bores over 500 mm.

After review of the selection process, the examples and the general selection information on pages G-12 through G-17, you can use the following charts to obtain specific information on torque capability, maximum bore, maximum misalignment, lubrication quantities and weights. For convenience, data is listed in English and metric units.

Continuous Sleeve Series (C) charts 1, 2, 3

Flanged Sleeve Series (F) charts 4, 5, 6, 7

Continuous Sleeve Series

Chart 1

	C	apacity			Max.	Pa	arallel		Grease Ca	pacity	
Size	HP	Toro	lue	Shear Pin	Speed	Misal	ignment				
C	100RPM	in-lb	Nm	Torque	Unbal ¹			We	ight	Volu	me
		x 10 ³	x 10³	RPM		inch	mm	US	Metric	US	Metric
7⁄8	4	2.5	0.3		6,000	.005	.13	1.0 oz	28 g	2 oz-liq	59 mL
11/2	12	7.6	0.9		5,000	.007	.18	1.5 oz	42 g	3 oz-liq	89 mL
2	32	20.2	2.3		4,200	.007	.18	2.8 oz	78 g	6 oz-liq	178 mL
21/2	48	30.2	3.4	ner	3,750	.010	.25	5.0 oz	142 g	12 oz-liq	355 mL
3	80	50.4	5.7	Customer	3,000	.012	.30	0.5 lb	226 g	18 oz-liq	533 mL
31/2	140	88.2	10.0	Determined By Cust Specifications	2,800	.012	.30	0.8 lb	340 g	26 oz-liq	770 mL
4	200	126.0	14.2	By	2,400	.007	.18	1.0 lb	453 g	1.1 qts	1.1 L
41⁄2	292	184.0	20.8	ecifi	2,200	.007	.18	1.3 lbs	566 g	1.5 qts	1.4 L
5	430	270.9	30.6	sp mir	2,100	.009	.23	1.5 lbs	679 g	1.8 qts	1.7 L
6	600	378.0	42.7	eter	2,000	.010	.25	2.0 lbs	906 g	2.3 qts	2.2 L
7	950	598.5	67.6	ă	1,000	.011	.28	2.5 lbs	1.1 kg	2.9 qts	2.8 L
9	2,000	1,260.0	142.4		800	.013	.33	4.5 lbs	2.0 kg	1.3 gal	5.0 L
11	3,500	2,205.0	249.2		600	.014	.36	4.8 lbs	2.2 kg	1.4 gal	5.2 L
12	4,000	2,520.0	284.7		550	.014	.36	6.5 lbs	3.0 kg	1.9 gal	7.2 L

Notes: 1. Max Speed Balanced — Approximately 3 Times Speed Shown Unbalanced

2. Horsepower, Torque, and Parallel Misalignment Capacity for sizes 7% through 3½ are based on ½° misalignment per gear mesh.

3. Horsepower, Torque, and Parallel Misalignment Capacity for sizes 4 through 12 are based on ¹/₄° misalignment per gear mesh.

Chart 2

				Арр	roximate Wei	ght-Rough	n Bore							Inertia - Rou	ugh Bore	
Size	Flex	-Flex	Flex-Uni	versal	Floating Shaft Spacer		Cut-out Sh	nifter	Shear Pin		Flex-	Flex	Flex-Universal			
C			(mill m	otor)	(cplg only -	no shaft)	(cplg only	– no spacer)							(mill n	notor)
	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	in-lb-sec ²	Nm-sec ²	in-lb-sec ²	Nm-sec ²
7⁄8	5.0	2.3	7	3.2	10	4.5	7.0	3.2	ç		N/A	N/A	.016	.002	.018	.002
11/2	8.0	3.6	11	5.0	16	7.3	11	5.0	isio		8	4	.034	.004	.039	.004
2	13	5.9	19	8.6	26	12	16	7.3	Jer		10	5	.088	.010	.109	.012
21/2	20	9.1	29	13	40	18	26	12	Dimension		15	7	.194	.022	.244	.028
3	33	15	46	21	66	30	43	20	0D [23	10	.466	.053	.578	.065
31/2	63	29	77	35	126	57	79	36			47	21	.989	.112	1.120	.127
4	91	41	109	49	182	83	115	52	and		90	41	1.99	.225	2.240	.252
41⁄2	126	57	155	70	252	114	158	72	Š		112	51	3.330	.376	3.870	.437
5	195	89	220	100	390	177	248	113	þ		177	80	7.080	.800	7.690	.869
6	267	121	315	143	534	242	340	154			250	114	13.000	1.470	14.600	1.650
7	320	145							ine				23.800	2.690		
9	520	236							Determined				54.200	6.120		
11	925	420							ete				128.000	14.500		
12	1,200	545							Ō				168.000	19.000		

Continuous Sleeve Series Con't.

Chart 3

		Rough	Bore			Maximum	Bore ¹	
Size		-			1 Sq	. Key¹	Metri	ic Key
С	std. or inch	rigid hub mm	shea inch	r hub mm	std. hub inch	shear inch	std. mm	shear mm
7⁄8	0.44	11	N/A	N/A	1.250	N/A	31	N/A
11⁄2	0.63	15	0.50	13	1.625	.938	42	24
2	0.73	18	0.88	22	2.125	1.500	56	38
21/2	0.88	22	1.00	25	2.625	1.750	70	44
3	1.19	30	1.50	38	3.125	2.250	84	57
31⁄2	1.25	32	1.50	38	3.625	2.625	97	66
4	1.75	44	2.00	51	4.125	3.625	111	92
41⁄2	2.38	60	2.50	64	4.750	4.125	130	104
5	2.88	73	3.00	76	5.750	4.500	160	114
6	3.88	98	4.00	102	6.625	5.875	186	149
7	4.69	119			7.500 ²		200	
9	5.88	149			9.500 ²		240	
11	7.75	197			11.500 ²		305	
12	9.75	248			12.500 ²		330	

 Note:
 Bores and Keyways are standard per AGMA 9002-A86 for inch sizes through 9.000; see page ED-17 in Engineering Data section, Metric Bores are per ISO R286 and Keyways are per DIN 6885; see page ED-15 in Engineering Data section.

2. These bores have a reduced keyway.

Flanged Sleeve Series Sizes 1 to 9

Chart 4

		Capacity		Max.	Par	allel
Size	HP	Toro	lue	Speed	Misali	gnment
F	100RPM	in-lb Nm		Unbal ³		
		x 10 ³	x 10 ³	RPM	in	mm
1	12	7.6	0.85	6,000	0.0555	1.4
1½	30	18.9	2.14	5,500	0.060	1.5
2	50	31.5	3.56	5,000	0.085	2.2
21/2	90	56.7	6.41	4,400	0.105	2.7
3	150	94.5	10.7	4,000	0.115	2.9
31/2	240	151.2	17.1	3,500	0.130	3.3
4	350	220.5	24.9	3,000	0.150	3.8
4½	480	302.4	34.2	2,700	0.175	4.4
5	690	434.7	49.1	2,500	0.200	5.1
5½	910	573.3	64.8	2,200	0.220	5.6
6	1,190	749.7	84.7	2,100	0.120	3.0
7	1,600	1,008	113.9	2,000	0.135	3.4
8	2,100	1,323	149.5	1,900	0.160	4.1
9	2,900	1,827	206.4	1,800	0.165	4.2

Notes: 1. Horespower Torque Capacity and Parallel Misalignment Capacity for sizes 1 through 5½, are based on 1½° misalignment per gear mesh and maximum bore. Consult Lovejoy for greater capacity.

- 2. Horsepower, Torque Capacity and Parallel Misalignment Capacity for sizes 6 through 9 are bases on ³/₄° misalignment per gear mesh and maximum bore. Consult Lovejoy for greater capacity.
- **3.** For couplings operating at higher speeds, consult Lovejoy engineering.

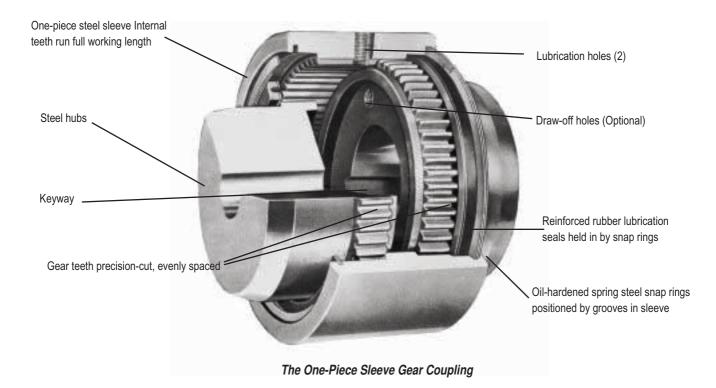
Flanged Sleeve Series Sizes 1 to 9 con't.

Chart 5

	L	ube Capaci	ty flex-flex		Lı	ube Capac	ity flex-rigi	d
Size	Wei	ight	Volu	ume	We	ight	Volu	ime
F	US	Metric	US	Metric	US	Metric	US	Metric
1	2 oz	57g	2 oz-liq	59 mL	1 oz	28 g	1 oz-liq	30 mL
11⁄2	4 oz	113 g	4 oz-liq	118 mL	2 oz	57 g	2 oz-liq	59 mL
2	6 oz	163 g	6 oz-liq	178 mL	3 oz	81 g	3 oz-liq	89 mL
21/2	11 oz	297 g	12 oz-liq	355 mL	5 oz	149 g	6 oz-liq	178mL
3	1.0 lb	454 g	18 oz-liq	533 mL	0.5 lb	227 g	9 oz-liq	266mL
31/2	1.3 lbs	568 g	24 oz-liq	710 mL	0.6 lb	284 g	12 oz-liq	355mL
4	2.0 lbs	908 g	1.1 qts	1.1 L	1.0 lb	454 g	18 oz-liq	532mL
41⁄2	3.5 lbs	1.59 kg	2.0 qts	1.9 L	1.8 lbs	795 g	1.0 qt	946mL
5	4.5 lbs	2.04 kg	2.5 qts	2.4 L	2.3 lbs	1.0 kg	1.3 qts	1.2 L
51/2	6.5 lbs	2.95 kg	3.5 qts	3.3 L	3.3 lbs	1.5 kg	1.8 qts	1.7 L
6	7.3 lbs	3.29 kg	1.0 gal	3.8 L	3.6 lbs	1.6 kg	0.5 gal	1.9 L
7	9.3 lbs	4.20 kg	1.3 gals	4.7 L	4.6 lbs	2.1 kg	0.6 gal	2.4 L
8	18 lbs	7.95 kg	2.3 gals	8.5 L	8.8 lbs	4.0 kg	1.1 gals	4.3 L
9	20 lbs	9.08 kg	2.8 gals	10.4 L	10.0 lbs	4.5 kg	1.4 gals	5.2 L

Chart 6

					Approxim	nate Weight-S	olid					Inertia-So	olid			
Size	flex-	rigid	flex-flex		flex-u	iniversal	rigio	l-rigid	flex-	flex	flex-r	igid	flex-un	iversal	rigid-	rigid
F	lb	kg	lb	kg	lb	kg	lb	kg	in-lb-sec ²	Nm-sec ²						
1	9	4	9	4	12	5	10	5	0.049	0.006	0.049	0.006	0.049	0.006	0.049	0.006
1½	17	8	19	9	24	11	20	9	0.168	0.019	0.176	0.020	0.183	0.021	0.184	0.021
2	34	15	34	15	45	20	34	15	0.388	0.044	0.393	0.044	0.445	0.050	0.399	0.045
2½	55	25	54	25	71	32	60	27	0.88	0.100	0.939	0.106	0.994	0.112	1.00	0.113
3	86	39	80	36	104	47	91	41	1.70	0.192	1.79	0.203	1.94	0.219	1.89	0.214
3½	135	61	130	59	151	69	143	65	3.84	0.435	3.94	0.446	4.27	0.482	4.05	0.457
4	195	89	190	86	234	86	211	96	7.05	0.80	7.34	0.831	7.85	0.887	7.63	0.863
4½	268	122	250	114	310	141	289	131	11.1	1.25	11.7	1.33	12.5	1.41	12.4	1.40
5	394	179	380	173	450	204	417	189	21.4	2.42	22.3	2.52	23.5	2.65	23.1	2.61
5½	526	239	520	236	609	276	541	246	33.1	3.75	34.4	3.89	36.3	4.10	35.7	4.04
6	687	312	650	295	764	347	724	329	44.7	5.06	48.3	5.46	49.6	5.60	51.8	5.86
7	1,017	462	950	431			1,084	492	83.3	9.42	91.5	10.3			99.6	11.27
8	1,609	730	1,560	708					167	18.91	185	21.0			204	23.02
9	2,128	966	2,015	915					287	32.47	305	34.5			323	36.54

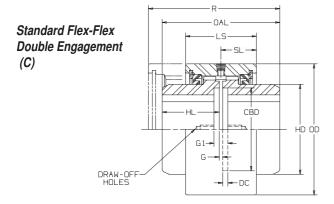

Chart 7

		Rough	Bore				Maximu	Im Bore ¹		
Size					1 Sq	. Key	1 Re	d. Key	Metric	: Key
F	flex	hubs	rigid	hubs	flex	rigid	flex	rigid	flex	rigid
	inch	mm	inch	mm	inch	inch	inch	inch	mm	mm
1	0.44	11			1.625	2.125	1.750	2.250	42	56
11⁄2	0.69	18	C C C C C C C C C C C C C C C C C C C	í	2.125	2.813	2.250	3.062	56	76
2	0.94	24	E Z		2.750	3.500	2.875	3.750	73	95
21/2	1.44	37	Ц С	1	3.250	4.250	3.375	4.500	88	114
3	1.44	37			4.000	4.875	4.250	5.250	107	134
31⁄2	1.81	46	SOLID W//CENTER	1	4.625	5.625	4.875	5.875	124	150
4	2.44	62	C C)	5.375	6.500	5.625	6.500	147	176
41⁄2	3.00	76			6.000	7.375	6.500	7.625	167	202
5	3.00	76	4.00	101	6.500	8.375	7.000	8.750	176	231
51⁄2	4.00	101	4.50	114	7.375	9.250	7.625	9.750	202	260
6	4.00	101	5.50	127	8.000	10.125	8.500	10.750	225	288
7	5.00	127	5.75	139	9.000	11.250	9.750	12.000	254	318
8	6.00	152	6.50	165	11.000	13.500	11.750	14.250	312	380
9	7.00	177	7.50	190	12.000	15.000	12.750	15.750	340	418

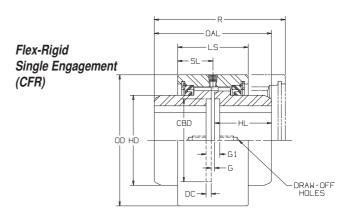
Note: **1.** Bores and Keyways are standard per AGMA 9002-A86 for inch sizes through 9.000; see page ED-17 in Engineering Data section. Metric Bores are per ISO R286, and Keyways are per DIN 6885, JS9; see page ED-15 in Engineering Data section

Lovejoy/Sier-Bath Continuous Sleeve Series

Lovejoy/Sier-Bath Continuous Sleeve Series "C" and "CFR"


Flex-Flex

The basis for all types of Lovejoy/Sier–Bath Continuous Sleeve Flexible Gear Couplings. Suitable for most applications. Great simplicity allows inexpensive adaptation to a wide variety of special types.


Flex-Rigid

The Flex-Rigid Gear Coupling consists of a flexible hub and rigid hub with a single sleeve. The flexible hub is a standard reborable hub. The rigid hub uses a splined reborable type hub. Flex-Rigid type gear couplings are most commonly used in floating shaft applications, or on line shafting to accommodate axial expansion. The Flex-Rigid coupling accommodates angular misalignment only.

Use These Specifications for Both Standard & Vertical Shaft Type.

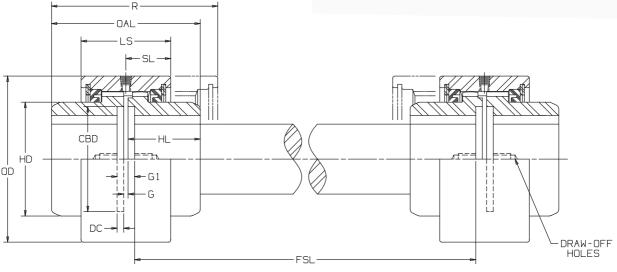
Size	Torque	Max Speed	Maxin	num Bore	Minimum	OAL	OD	HD	HL	LS	SL	Dista Betweer		в	DC	CBD
C	Rating	Unbalanced	sq. key	metric key	Bore	0/12					01	G	G1			022
CFR	in-lbs.	RPM	inch	mm	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch
7/8	2,520	6,000	1.250	31	0.44	3.13	3.31	2.00	1.50	2.00	1.00	0.13	0.38	3.75	0.13	1.94
1 1/2	7,560	5,000	1.625	42	0.63	3.75	3.75	2.38	1.81	2.53	1.27	0.13	0.50	4.59	0.19	2.25
2	20,160	4,200	2.125	56	0.73	4.25	4.75	3.25	2.06	2.56	1.28	0.13	0.50	4.88	0.19	3.00
2 1/2	30,240	3,750	2.625	70	0.88	4.75	5.50	3.94	2.25	3.06	1.53	0.25	0.75	5.72	0.25	3.75
3	50,400	3,000	3.125	84	1.19	5.50	6.63	4.75	2.63	3.75	1.88	0.25	0.75	6.88	0.25	4.75
3 /12	88,200	2,800	3.625	97	1.25	8.75	7.50	5.38	4.25	4.00	2.00	0.25	0.75	9.25	0.25	5.50
4	126,000	2,400	4.125	111	1.75	9.00	8.75	6.25	4.38	4.63	2.31	0.25	0.75	9.50	0.25	6.50
4 1/2	183,960	2,200	4.750	130	2.38	10.25	9.50	7.25	5.00	4.88	2.44	0.25	0.75	10.38	0.25	7.25
5	270,900	2,100	5.750	160	2.88	12.25	10.75	8.25	6.00	5.75	2.88	0.25	0.75	12.25	0.25	8.13
6	378,000	2,000	6.625	186	3.88	13.00	12.25	9.50	6.38	6.50	3.25	0.25	0.75	13.38	0.25	9.25
7	598,500	1,000	7.500 ²	200	4.69	14.88	14.00	10.50	7.25	7.50	3.75	0.38	0.88	15.38	0.25	9.75
9	1,260,000	800	9.5002	240	5.88	19.00	16.25	12.63	9.25	8.13	4.06	0.50	1.00	19.00	0.25	12.50
11	2,205,900	600	11.500 ²	305	7.75	22.50	19.25	15.63	11.00	8.13	4.06	0.50	1.00	22.50	0.25	15.50
12	2,520,000	550	12.500 ²	330	9.75	25.00	20.50	16.50	12.25	8.38	4.19	0.50	1.00	25.00	0.25	16.00

Notes: 1. Draw–off holes are optional at additional charge in sizes ⁷/₈ through 3¹/₂. They are standard on sizes 4 and up.

- 2. Larger sizes are available consult Lovejoy Engineering.
- **3.** The distance between shafts may be any dimension between G and G1.
- 4. For Performance Data see pages G-18 and G-19.

When ordering, please specify:

1. Required inside diameter of both hubs, with tolerances.


2. Sizes of keyways, if desired.

3. Speed and horsepower of driving unit.

Lovejoy/Sier-Bath Continuous Sleeve Series Floating Shaft Type – "CFS"

The Floating Shaft Type coupling is designed for remote drive and excessive misalignment problems. The coupling hubs on the driver and driven ends are rigid while the two center hubs connected by the center shaft are flexible. These hubs can be reversed if necessary without sacrificing ease of installation or disassembly.

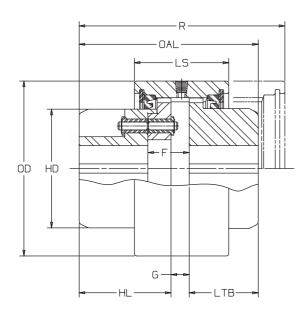
												Dist	ance				
Size	Torque	Max Speed	Maxin	num Bore	Minimum	OAL	OD	HD	HL	LS	SL	Between	n Shafts ³	R	DC	CBD	FSL⁴
CFS	Rating	Unbalanced	sq. key	metric key	Bore							G	G1				
	in-lbs.	RPM	inch	mm	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch
7/8	2,520	6,000	1.250	31	0.44	3.13	3.31	2.00	1.50	2.00	1.00	0.13	0.38	3.75	0.13	1.94	3.00
1 1/2	7,560	5,000	1.625	42	0.63	3.75	3.75	2.38	1.81	2.53	1.27	0.13	0.50	4.59	0.19	2.25	3.63
2	20,160	4,200	2.125	56	0.73	4.25	4.75	3.25	2.06	2.56	1.28	0.13	0.50	4.88	0.19	3.00	4.13
2 1/2	30,240	3,750	2.625	70	0.88	4.75	5.50	3.94	2.25	3.06	1.53	0.25	0.75	5.72	0.25	3.75	4.50
3	50,400	3,000	3.125	84	1.19	5.50	6.63	4.75	2.63	3.75	1.88	0.25	0.75	6.88	0.25	4.75	5.25
3 /12	88,200	2,800	3.625	97	1.25	8.75	7.50	5.38	4.25	4.00	2.00	0.25	0.75	9.25	0.25	5.50	8.00
4	126,000	2,400	4.125	111	1.75	9.00	8.75	6.25	4.38	4.63	2.31	0.25	0.75	9.50	0.25	6.50	8.25
4 1/2	183,960	2,200	4.750	130	2.38	10.25	9.50	7.25	5.00	4.88	2.44	0.25	0.75	10.38	0.25	7.25	9.50
5	270,900	2,100	5.750	160	2.88	12.25	10.75	8.25	6.00	5.75	2.88	0.25	0.75	12.25	0.25	8.13	11.50
6	378,000	2,000	6.625	186	3.88	13.00	12.25	9.50	6.38	6.50	3.25	0.25	0.75	13.38	0.25	9.25	12.25

Notes: 1. Larger sizes are available – consult Lovejoy Engineering.
 2. Draw-off holes are optional at additional charge in sizes ⁷/₈

- through $3^{1}/_{2}$. They are standard on sizes 4 and up.
- 3. May be any dimension between G and G1.
- 4. Minimum length of floating shaft.
- ${\bf 5.}$ For Performance Data see pages G-18 and G-19.

When ordering, please specify:

- 1. Required inside diameter of all hubs, with tolerances. Indicate which bores are for flexible and which for rigid hubs.
- 2. Sizes of keyways, if desired.
- 3. Speed and horsepower of driving unit.
- 4. A Floating Shaft coupling consists of two flexible hubs, two rigid hubs, two sleeves, four accessory kits, one shaft, and two keys, and should be ordered as "One Set Floating Shaft coupling."
- 5. Distance between ends of shafts to be connected.


Lovejoy/Sier-Bath Continuous Sleeve Series Shear Pin Type – "CSHP"

The Shear Pin coupling is designed to prevent damage to connected equipment resulting from excessive torque or sudden shock. The shear pins in the Lovejoy coupling are manufactured to shear at predetermined loads which are specified by the customer. New pins may be quickly inserted.

VIRTUS

Power Transmission

				Maximur	n Bore											
Size	Torque	Max Speed	std. or	r rigid hub	She	ear hub	Minimum	OAL	OD	LS	HD	LTB	HL	F	G	R
CSHP	Rating	Unbalanced	sq. key	metric key	sq. key	metric key	Bore									
	in-Ibs.	RPM	inch	mm	inch	mm	inch	inch	inch	inch	inch	inch	inch	inch	inch	inch
1 1/2	7,560	5,000	1.625	42	0.938	24	0.63	4.38	3.75	2.53	2.38	1.63	2.25	1.13	0.50	5.28
2	20,160	4,200	2.125	56	1.500	38	0.73	4.88	4.75	2.56	3.25	1.88	2.50	1.13	0.50	5.56
2 1/2	30,240	3,750	2.625	70	1.750	44	0.88	5.44	5.50	3.06	3.94	2.00	2.69	1.50	0.75	6.50
3	50,400	3,000	3.125	84	2.250	57	1.19	6.38	6.63	3.75	4.75	2.38	3.25	1.63	0.75	7.75
3 /12	88,200	2,800	3.625	97	2.625	66	1.25	8.13	7.50	4.00	5.38	4.00	3.38	1.75	0.75	8.13
4	126,000	2,400	4.125	111	3.625	92	1.75	9.00	8.75	4.63	6.25	4.13	4.13	2.00	0.75	9.50
4 1/2	183,960	2,200	4.750	130	4.125	104	2.38	9.75	9.50	4.88	7.25	4.75	4.25	2.00	0.75	9.88
5	270,900	2,100	5.750	160	4.500	114	2.88	11.50	10.75	5.75	8.25	5.75	5.00	2.25	0.75	11.50
6	378,000	2,000	6.625	186	5.875	149	3.88	13.00	12.25	6.50	9.50	6.13	6.13	2.88	0.75	13.13

Notes: 1. Larger sizes are available - consult Lovejoy Engineering.

- 2. Draw-off holes are available at an additional charge on sizes $^{7}\!/_{8}$ through $3^{1}\!/_{2}.$ They are standard on sizes 4 and up.
- 3. For Performance Data see pages G-18 and G-19.

When ordering, please specify:

- 1. Required inside diameter of both hubs, with tolerances.
- 2. Sizes of keyways, if desired.
- 3. Speed and horsepower of driving unit.
- 4. Complete operational data of application.
- 5. Which is shear hub, and torque at which pins are to shear.

Coupling Grease

high quality coupling grease for low to high-speed applications. The grease is designed to address the problems that are unique to gear coupling applications such as high pressure, high centrifugal force, prolonged work periods, and corrosive environments. *Please see pages G-11 and G-13 for specific quantities per product line.*

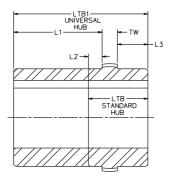
Lubrication

Centrifugal separation of the oil and thickener during operation is a basic problem in gear coupling applications, especially high speed applications. The higher the operating speed, the greater the amount of separation can be expected. This causes the soap properties in the grease to accumulate in the areas where lubrication is required. The soap does not provide adequate lubrication which results in accelerating the coupling wea

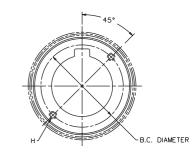
Contents

The grease contains ingredients that have been proven to in gear coupling applications. The grease contains:

- Lithium Soap
- Highly Refined Paraffinio Mineral Oil
- Rust Inhibitors
- Anti-oxidants
- EP/Anti-wear additive

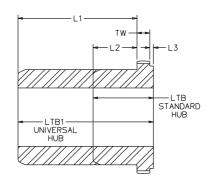

Hub Puller Hole Data—F Hubs

Size	Bolt Circle Diameter	e Hole Size
1	None	None
1 ¹ / ₂	None	None
2	3.38	⁵ / ₁₆ -18 x .50 DP.
2 ¹ / ₂	3.94	³ / ₈ -16 x .56 DP.
3	4.94	¹ / ₂ -13 x .75 DP.
3 ¹ / ₂	5.56	¹ / ₂ -13 x .75 DP.
4	6.44	⁵ / ₈ -11 x .94 DP.


Standard & Universal Hub Dimensions

F Hubs—Inch

					STD.	UNIV. HUB
Size	L1	L2	L3	TW	LTB	LTB 1
1	2.75	0.44	0.75	0.50	1.69	4.00
1 ¹ / ₂	3.13	0.56	0.81	0.56	1.94	4.50
2	3.63	0.56	1.25	0.63	2.44	5.50
2 ¹ / ₂	4.22	0.75	1.53	0.75	3.03	6.50
3	4.44	1.03	1.69	0.88	3.59	7.00
31/2	4.63	1.31	1.88	1.00	4.19	7.50
4	4.97	1.47	2.16	1.13	4.75	8.25
4 ¹ / ₂	5.19	1.50	2.56	1.25	5.31	9.00
5	5.06	1.59	2.94	1.50	6.03	9.50
5 ¹ / ₂	5.56	1.97	3.19	1.75	6.91	10.50



Size	Bolt Circle Diameter		lole Siz	е
4 ¹ / ₂	7.38	⁵ / ₈ -11	x .94	DP.
5	8.00	³ / ₄ -10	x 1.13	DP.
5 ¹ / ₂	9.00	1-8	x 1.50	DP.
6	9.75	1-8	x 1.50	DP.
7	11.63	1-8	x 1.50	DP.
8	14.00	1-8	x 1.50	DP.
9	15.25	1 ¹ / ₄ -7	x 1.88	DP.

PULLER HOLES

C Hub	s—Incl	h				
					STD.	UNIV. HUB
Size	L1	L2	L3	TW	LTB	LTB 1
7/ ₈	3.38	1.13	0.13	0.25	1.50	3.75
1 ¹ / ₂	3.36	1.17	0.13	0.52	1.81	4.00
2	4.06	1.50	0.13	0.44	2.06	4.63
2 ¹ / ₂	4.39	1.52	0.16	0.58	2.25	5.13
3	4.89	1.77	0.25	0.61	2.63	5.75
31/2	5.58	3.33	0.25	0.67	4.25	6.50
4	5.52	3.27	0.25	0.86	4.38	6.63
4 ¹ / ₂	6.64	3.89	0.25	0.86	5.00	7.75
5	6.39	4.52	0.25	1.23	6.00	7.88
6	7.64	4.52	0.25	1.61	6.38	9.50

Coupling Grease

Coupling Grease should be designed to resist centrifugal separation, thereby keeping the oil portion of the grease in the working areas of the coupling. When using the Coupling Grease, lubrication intervals may be extended. A coupling exposed to extreme temperatures, excessive moisture, frequent reversals or grease leakage may require more frequent lubrication.

The benefits of using Coupling Grease include:

- Highest pressure and wear protection available.
- Built-in rust and corrosion inhibitors.
- Increased coupling life.
- Reduced maintenance costs.
- Reduced downtime.
- Superior lubrication.

In general, grease should be supplied every month and replaced every 3 months after operation.

Specifications

The specifications indicated below are average values, variations which do not affect product performance may occur.

Temperature Operating Range: -40°F (-40°C) to 250°F (121°C)

Minimum Base Oil Viscosity: 2625SUS (567cSt) @ 100°F (38°C)

Centrifuge Separation Characteristics:

ASTM D-4425-K36 = 0/24

NLGI Grade: 1 Minimum Dropping Point: 225°F (108°C) Minimum Timken Load: 40 lbs

If an alternative grease is used it should meet the minimum specifications listed below. Table 4 is a list of grease products that meet the general specifications but should not be considered exclusive recommendations.

Common Industrial Lubricants (NLGI Grade #2) Table 4

	Ambient Temper	rature Range:
	0°F to 150°F	-30°F to 100°F1
Manufacturer	(-18°C to 66°C)	(-34°C to 38°C)
Amoco Oil Co.	Amolith Grease #2	Amolith Grease #2
Atlantic Richfield Co.	Litholene HEP 2	Litholene HEP 2
Chevron U.S.A. Inc.	Chevron Dura-Lith EP-2	Chevron Dura-Lith EP 2
Cities Service Co.	Citgo HEP-2	Citgo HEP 2
Conoco Inc.	EP Conolith #2	EP Conolith #2
Exxon Company, USA	Ronex MP	Ronex MP
Gulf Oil Corp.	Gulfcrown Grease #2	Gulfcrown Grease #2
E.F. Houghton & Co.	Cosmolube #2	Cosmolube #1
Imperial Oil Ltd.	Esso MP Grease H	Lotemp EP
Kendall Refining Co.	Kenlube L-421 Gease	Kenlube L-427 Grease
Keystone Div. (Pennwalt)	#81 Light	#84 Light
Mobil Oil Corp.	Mobilux EP 111	Mobilux #1
Phillips Petroleum Co.	IB & RB Grease	Philube IB & RB Grease
Shell Oil Co.	Alvania Grease #2	Alvania Grease #2
Standard Oil Co. (OH)	Factran #2	Factran #2
Sun Oil Company	Prestige 42	Prestige 42
Texaco Lubricants	Starplex HD2	Multifak EP2
Texaco Canada Inc.	Marfak HD 2	Marfak AP
Union Oil Co. (CA)	Union Unoba #2	Union Unoba #2
Valvoline Oil Co.	Val-Lith EP #2	Val-Lith EP #2

Note: Check with lube manufacturer for approved lubricants to use in the food processing industry.

GreatOrientalTrading @@gotrading GreatOrientalTrading S097-3619703

Temperature Operating Range:

0°F (-18°C) to 150°F (66°C) Centrifuge Separation Characteristics: Low oil separation rate and high resistance to separation from centrifuging. NLGI Grade: 2 Minimum Dropping Point: 190°F (74°C)

Applications		Con	ditions		(Grease lubrication	Oil lubr	ication
	Speed	Centrifugal force	Load	Misalignment	NLGI.	Properties	Oil-filled	Continuous
Low-speed	RPM ≤ 200 x d ^{-1/2} , d = pitch diameter of the gear tooth (inch)	< 10g	The peak torque < 2.5 times the continuous torque.	< 3/4°	No. 0, No. 1	-	Viscosity: ≥ 150 SSU at 100 °C Grade:	Viscosity: ≥ 50 SSU at 100 °C Grade:
Normal -speed	≤ 3,600 RPM	≤ 200g	The peak torque < 2.5 times the continuous torque.	< 3/4°	No. 2	-	- ISO 460 - SAE Gear Oil 140	- ISO 46 - SAE Engine Oil 20
High-speed	> 3,600 RPM	> 200g	Uniform	< 1/2°	No. 3	- Good resistance to centrifugal separation.	Viscosity: 2100 to 3600 SSU at 100 °F Grade: ISO 460	
High-torque High-misalignment	< 3,600 RPM	< 200g	The peak torque > 2.5 times the continuous torque.	> 3/4°	No. 2	 Anti-friction and anti-wear additives (molydisulfide) Extreme pressure (EP) additives. Minimum Timken Load > 40 lb. Minimum Dropping Point 150 °C 	Viscosity: ≥ 150 SSU at 100 °C	

Summary of Lubrications for Various Conditions.