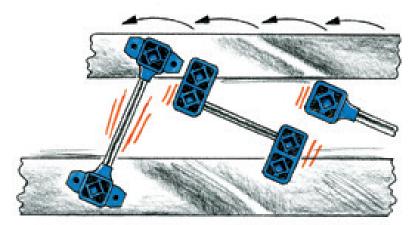

ROSTA Oscillating Mountings

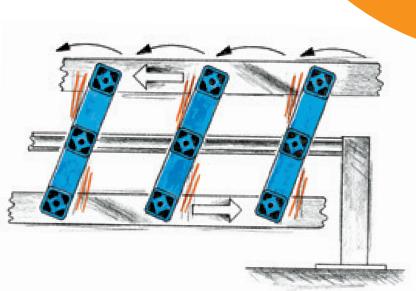
Elastic Suspensions for Screens and Shaker Conveyors High dampening – long lifetime – overload proof


ROSTA Oscillating elastic suspensions for all types of screening

AU Rocker Arm

Rocker arms and drive heads for crank shaft driven shaker conveyors

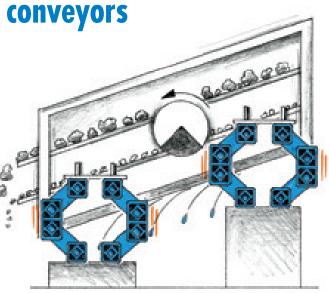
- maintenance-free and long lasting guide arms for shakers
- resilient rod heads for alternating loads

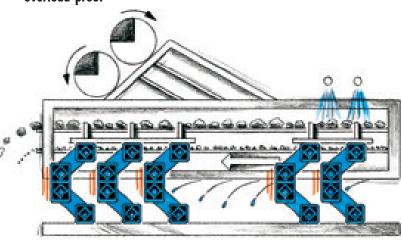

Spring accumulators for natural frequency shakers

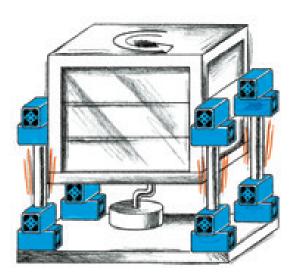
- for the powerful, harmonic actuation of feeders
- energy-saving and silent power packs

Double rocker arms for high speed shaker conveyors

- 1:1 mass balancing, reaction neutral suspensions
- high dynamic spring rates for natural frequency systems


Mountings machines and shaker conveyors


AB Screen Mount


AK Universal Joint

maintenance-free, long lasting, noiseless, corrosion-resistant and overload-proof for all oscillatory equipments and machinery

- Vibration absorbing mounts for circular and linear motion screens - long lasting
- high isolation degree
- ingli isolarion degre
 corrosion-resistant
- overload-proof

Universal joint suspensions for gyratory sifters

- long lasting articulations for guiding horizontal gyrations
- offering extremely high supporting force, up to 40'000 N per mounting

Selection table for free oscillating systems (with unbalanced excitation)

	404		an it	27 87				
	One mass system circular motion screen	One mass system linear motion screen	Two mass system with counterframe	One mass system linear motion screen hanging				
AB Page 2.11	Oscillating Mounting – uni High vibration isolation ar Natural frequencies appro 9 sizes from 50 N to 20'0	nd low residual force transmi ox. 2–3 Hz.	ission.					
AB-HD Page 2.12	production peaks. (Heavy Natural frequencies appro	illating Mounting for impact loading and high duction peaks. (Heavy Duty) tural frequencies approx. 2.5–3.5 Hz. izes from 500 N to 14'000 N per AB-HD.						
AB-D Page 2.13		Oscillating Mounting in co Optimal in two mass syste mounting. Natural frequencies appro 7 sizes from 500 N to 16'	ems as counterframe ox. 3–4.5 Hz.					
ABI Page 2.14	industry.	e from stainless steel for the nd low residual force transm px. 2–3 Hz. 0 N per ABI.						
HS Page 2.15				Oscillating Mounting for hanging systems. Natural frequencies approx. 3–4 Hz. 5 sizes from 500 N to 14'000 N per HS.				

Selection table for gyratory sifters

AK Page 2.36	Universal Joint for the support or suspension of positive drive or freely oscillating gyratory sifting machines. 10 sizes up to 40'000 N per AK.	Gyratory sifter upright staying	Gyratory sifter hanging
AV Page 2.38	Single Joint specially designed with large rubber volume for the suspension of gyratory sifting machines. Models with right-hand and left-hand threads. 5 sizes up to 16'000 N per AV.		

Oscillating Mountings

Selection table for guided systems (crank driven)

Tree 1	ATE OF	CT-T-Te		
One mass shaker "brute-force" system	One mass shaker "natural frequency" system	Two mass shaker "fast-runner" system with reaction force-compensation		
Single Rocker with adjustable Models with right-hand and le 7 sizes up to 5'000 N per roc	eft-hand threads.		AU Page 2.25	
Single Rocker with decided cere 6 sizes up to 2'500 N for flan 6 sizes up to 2'500 N for cent	ge fixation.		AS-P AS-C Page 2.26	
		Double Rocker with decided center distance. 5 sizes up to 2'500 N for flange fixation. 4 sizes up to 1'600 N for central fixation.	AD-P AD-C Page 2.27	
Single Rocker with adjustable Models with right-hand and le 7 sizes up to 5'000 N per roc	eft-hand threads.		AR Page 2.28	
Drive Head for crank drive tra Models with right-hand and le 9 sizes up to 27'000 N per de			ST Page 2.29	
	Spring Accumulator with high a running close to resonance fre A spring accumulator consists 5 sizes up to dynamic spring v	of 2 DO-A elements.	DO-A Page 2.30	

Notes regarding some special shaker systems:

- For free oscillating systems on pages 2.16-2.19
- For guided systems on pages 2.31 2.33
- For gyratory sifters on page 2.34

Technology of free oscillating systems with unbalanced excitation

Introduction

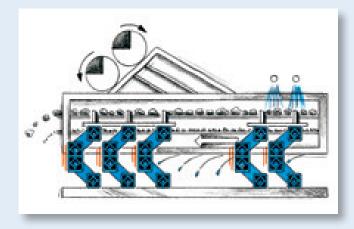
Free oscillating systems are either activated in using exciters, unbalanced motors or unbalanced shafts.

The oscillation amplitude, type of vibration and the direction of vibration of the screen are determined by the dimensioning and arrangement of these actuators. The excitation force, the angle of inclination of the excitation, the inclination of the screen-box and the position of the center of gravity determine the resulting oscillation amplitude of the device. The oscillation amplitude, and thereby the conveying speed of the machine, can be optimized by augmenting these.

ROSTA spring suspensions support the desired oscillation movement of the screen machine. Through their shape and function, they help to achieve a purely linear conveyor motion without unwanted lateral tumbling. These ideal spring suspensions harmonically support the running of the vibrating screen. Because of their high spring deflection capacity, they offer a good detuning of the excitation frequency with a very low natural frequency, which guarantees a high isolation effect with regard to the machine substructure. The ROSTA mounts effectively dissipate the large residual force peaks at start-up and shut-down, when passing through the natural frequency of the suspension.

Circular motion screens

and a same	


Circular motion screens or circular vibrators are normally excited by unbalanced weights that create a circular rotating oscillation of the screening frame. Relatively low accelerations of the screened material are achieved with this form of excitement. Circular vibrators thereby normally work with a screening frame inclination of 15° to 30°, so that an adequate material throughput is ensured.

It is recommended to mount circular vibratory screens of this kind on ROSTA type AB or AB-HD oscillating mountings. Experience has shown that the positioning of the AB suspensions under circular vibrators should be a mirror-inverted of each other, which, with the above-mentioned frame inclination, will counteract the tendency of the shifting of the center of gravity. If the suspension of the screening frame requires two supporting suspensions per brace support for reasons of capacity, these should also be preferably arranged in mirror-inverted manner for the above-mentioned reason.

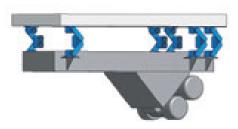
www.rosta.com

Linear motion screens

Linear motion screens or linear vibrators are normally excited by two unbalanced motors or by means of linear exciters, as well as through double unbalanced shafts (Eliptex), which generate a linear or slightly elliptical oscillation of the screening frame. Depending on the inclination positioning of the exciter, the angle of throw of the screened product can be adapted to the desired form of processing. A very high acceleration of the screened product, i.e. a higher material throughput, is achieved with linear vibrating screens. The screening frame of the linear vibrator is normally in the horizontal position.

Linear vibrating screens are preferably mounted on ROSTA oscillating mountings type AB or AB-HD. Depending on the positioning of the exciter on the screening frame, the feed-end: discharge-end load distribution can be different. The feed-end side is normally lighter, as the exciters are positioned close to the discharge-end and thereby pull the material through the screening frame; in many cases, the feed-end: discharge-end distribution is thereby 40% to 60%. In the interest of an even suspension, it is thereby recommended to mount the screening frame on six or more ROSTA oscillating mountings. All oscillating mountings should stand in the same direction, with the "knee" pointing in the discharge-end direction.

Linear motion screens with counterframe

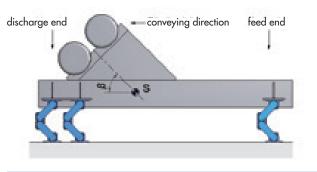


If, due to the demands of the process, large screens are mounted at a very high position in a building or in a purely steel construction, the transmission of the residual forces of a singlemass machine can set the

entire structure into unwanted vibrations. Or if a new and more powerful machine is mounted in an existing building, the residual force transmission could be too high for the older building. The residual force transmission is drastically reduced through the mounting of a counterframe under the screen, with only a negligible loss of oscillation amplitude (compensation movement of the counterframe reduces the oscillation amplitude).

ROSTA also has the ideal supports for the suspension of counterframes, the very compact mountings type AB-D.

Discharge chutes hanging under silos and bunkers


Discharge chutes under silos are normally supported by means of complicated yoke constructions and are suspended on pressure springs. With its HS suspensions (HS = hanging screen), ROSTA offers the possibility of the direct, costeffective suspension of the discharge unit on silos and bunkers. The geometry of the HS suspensions has been designed to accommodate tensile loads.

Design layout and evaluation

Mass of the empty channel and drive m0 680 kg Products on the channel 200 kg of which approx. 50% coupling* 100 kg Total vibrating mass* m 780 kg Mass distribution: feed end 33% discharge end % feed end 33% Acceleration due to gravity g 9.81 m/s² Load per corner feed end Ffeed end 1263 N Load per corner discharge end Fdischarge end 2563 N • Element choice in example 600 kgcm Oscillating stroke empty channel sw0 8.8 mm Oscillating stroke in operation sw 7.7 mm Motor revolutions ns 960 rpm Centrifugal force of both drives Fz 30'319 N Oscillating machine factor K 4.0	Subject	Symbol	• Example
discharge end% discharge end67%Acceleration due to gravityg9.81 m/s²Load per corner feed endFfeed end1263 NLoad per corner discharge endFdischarge end2563 N• Element choice in example6x AB 38Working torque of both drivesAM600 kgcmOscillating stroke empty channelswo8.8 mmOscillating stroke in operationsw7.7 mmMotor revolutionsns960 rpmCentrifugal force of both drivesFz30'319 NOscillating machine factorK4.0	Products on the channel of which approx. 50% coupling*	,	200 kg 100 kg
Oscillating stroke empty channelsw08.8 mmOscillating stroke in operationsw7.7 mmMotor revolutionsns960 rpmCentrifugal force of both drivesFz30'319 NOscillating machine factorK4.0	discharge end Acceleration due to gravity Load per corner feed end Load per corner discharge end	% discharge end g Ffeed end	67% 9.81 m/s ² 1263 N 2563 N
d - K g 4.0 g	Oscillating stroke empty channel Oscillating stroke in operation Motor revolutions Centrifugal force of both drives	sw ₀ sw ns Fz	8.8 mm 7.7 mm 960 rpm 30′319 N

• Natural frequency suspensions	fe	2.7 Hz
Degree of isolation	W	97 %

Calculation formulas

Loading per corner

$$F_{feed\text{-}end} = \frac{m \cdot g \cdot \% \text{ feed}\text{-}end}{2 \cdot 100} \quad F_{discharge\text{-}end} = \frac{m \cdot g \cdot \% \text{ discharge\text{-}end}}{2 \cdot 100}$$

Oscillating stroke (Amplitude peak to peak)

$$sw_0 = \frac{AM}{m_0} \cdot 10$$
 $sw = \frac{AM}{m} \cdot 10$

Centrifugal force

$$F_{z} = \frac{\left(\frac{2\pi}{60} \cdot n_{s}\right)^{2} \cdot AM \cdot 10}{2 \cdot 1000} = \frac{n_{s}^{2} \cdot AM}{18'240}$$

Oscillating machine factor

$$K = \frac{\left(\frac{2\pi}{60} \cdot n_{s}\right)^{2} \cdot sw}{2 \cdot g \cdot 1000} = \frac{n_{s}^{2} \cdot sw}{1'789'000}$$

Vibration isolation

W = 100 -
$$\frac{100}{\left(\frac{n_s}{60 \cdot fe}\right)^2 - 1}$$

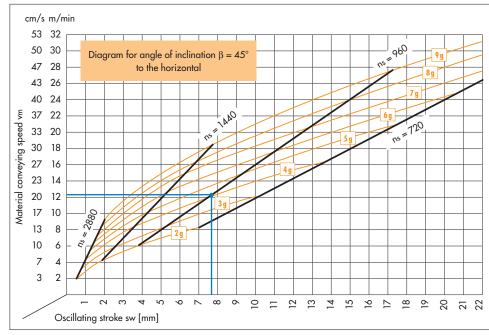
• **Example:** The proportion of the relationship between exciter frequency

exciter frequency 16 Hz (960 rpm) and mount frequency 2.7 Hz is offering a degree of isolation of 97%.

6.0 5.5 5.0 4.5 4.0 98% 3.5 Diagram of the 3.0 vibration isolation W [%] 00% 2.5 2.0 800 906 100 1200 1600 1700 2000 2100 2300 2400 2800 2900 3000 fe_ns 000 1300 400 1500 1800 1900 2200 2500 2600 2700 600 200

* The following has to be observed for the determination of the coupling effect and material flow:

- High coupling or sticking of humid bulk material
- Channel running full
- Fully stacked screen deck with humid material
- Weight distribution with and without conveyed material
- Centrifugal force does not run through the center of gravity (channel full or empty)
- Sudden impact loading occurs
- Subsequent additions to the screen structure (e.g. additional screening deck)



www.rosta.com

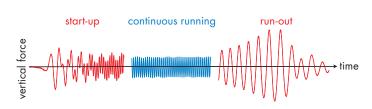
2.8

Determination of the average material conveying speed vm

Main influencing factors:

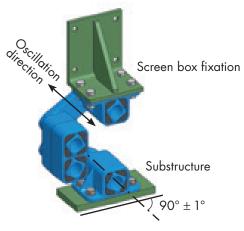
- Conveying ability of the material
- Height of the bulk goods
- Screen box inclination
- Position of unbalanced motors
- Position of the center of gravity

The material speed on circular motion screens does vary, due to differing screen-box inclination angles.


• Example:

The horizontal line out of the intercept point of stroke (7.7 mm) and motor revolutions (960 rpm) is indicating an average theoretical speed of 12.3 m/min or 20.5 cm/sec.

Resonance amplification and continuous running


At the screen start-up and run-out the suspension elements are passing through the resonance frequency. By the resulting amplitude superelevation the four rubber suspensions in the AB mountings do generate a high level of damping which is absorbing the remaining energy after only a few strokes. The screen box stops its motion within seconds.

Laboratory measurements of a typical development of the residual forces on a ROSTA screen suspension:

Alignment of the elements

If the suspensions for linear motion screens are arranged as shown on page 2.7, a harmonic, noiseless oscillation of the screen will result. The rocker arm fixed to the screen carries out the greater part of the oscillations. The rocker arm fixed to the substructure remains virtually stationary and ensures a low natural frequency, and thereby also a good vibration isolation. The mounting axis has to be arranged to be at right angles (90°) to the conveying axis, with maximum tolerance of $\pm 1^\circ$.

Compression load AB

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

5 5

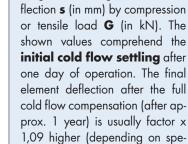
G [kN]

AB 27

AB 18

AB 15

s [mm]

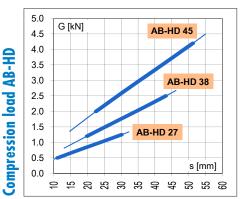

20 25 33 35 35 55 55 60 65

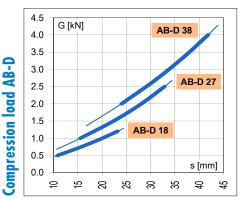
Deflection curves and

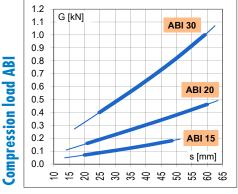
Diagrams showing the vertical de-

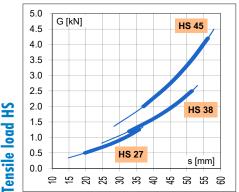
cold flow behaviours

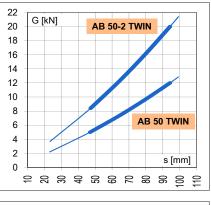
Final element deflection = s x 1,09

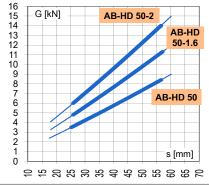

cific application, climate etc.).

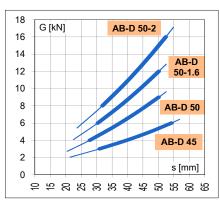

The deflection values are based on our catalogue specifications and should be understood as approximate values. Please consult also our tolerance specifications in chapter "Technology" in the general catalogue.

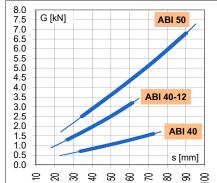


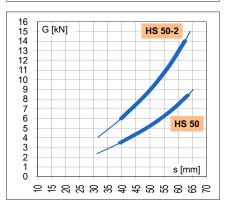


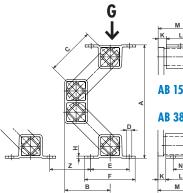

11 G [kN] AB 50-2 10 9 8 AB 50 7 6 5 4 AB 45 3 2 AB 38 1 s [mm] 0 9 20 30 40 50 60 70 80 60 01 10













Oscillating Mountings

Type AB

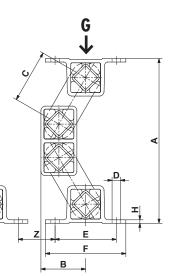
		ن رو
15–27	AB 45-50	A
38	AB 50-2	A

Art. No.	Туре	Load capacity GminGmax. [N]	A un- loaded	A* max. load	B un- loaded	B* max. load	С	D	E	F	Н	K	L	м	N	Weight [kg]
07 051 056	AB 15	50 - 160	169	115	71	89	80	ø7	50	65	9	10	40	52	-	0.5
07 051 057	AB 18	120 - 300	208	154	88	107	100	ø9	60	80	3.5	14	50	67	-	1.2
07 051 058	AB 27	250 - 800	235	170	94	116	100	ø11	80	105	4.5	17	60	80	-	2.2
07 051 059	AB 38	600 - 1′600	305	225	120	147	125	ø13	100	125	6	21	80	104	40	5.1
07 051 054	AB 45	1′200 – 3′000	353	257	141	172	140	13×20	115	145	8	28	100	132	65	11.5
07 051 061	AB 50	2′500 – 6′000	380	277	150	184	150	17x 27	130	170	12	35	120	160	60	20.8
07 051 055	AB 50-2	4′200 – 10′000	380	277	150	184	150	17x27	130	170	12	40	200	245	70	32.2
07 051 008	AB 50 TWIN	5′000 - 12′000	380	277	150	184	150	17x27	130	170	12	50	120	300	60	35.0
07 051 009	AB 50-2 TWIN	8′400 – 20′000	380	277	150	184	150	17x 27	130	170	12	60	200	470	70	54.0

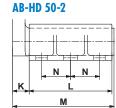
				Dynamic s	Dynamic spring value		Capaci min ⁻¹	ty limits 960	,	ent rpm		Light metal profile	ed	cast iron	ue painted
		Natural frequency		cd .	cd .	sw	К	sw	К	sw	K	metc	Steel welded construction	ılar o	ROSTA blue
Art. No.	Туре	GminGmax.	Z**	vertical [N/mm]	horizontal [N/mm]	max.	max.	max.	max. [–]	max.	max.	ight	iteel onst	Nodular	OST
7 (1). 1 (0).	<i>·</i> ··	[Hz]	2	[14/mm]	[IN/mm]	[mm]	[-]	[mm]		[mm]	[-]		0,0	~	<u> </u>
07 051 056	AB 15	4.3-2.8	65	10	6	14	4.1	12	6.2	8	9.3	х	х		х
07 051 057	AB 18	3.6–2.6	80	18	14	17	4.9	15	7.7	8	9.3	х	х		х
07 051 058	AB 27	3.7–2.7	80	40	25	17	4.9	14	7.2	8	9.3	х	х		х
07 051 059	AB 38	3.0-2.4	100	60	30	20	5.8	17	8.8	8	9.3	х	х		х
07 051 054	AB 45	2.8-2.3	115	100	50	21	6.1	18	9.3	8	9.3	х	х	х	х
07 051 061	AB 50	2.4–2.1	140	190	85	22	6.4	18	9.3	8	9.3			х	х
07 051 055	AB 50-2	2.4-2.1	140	320	140	22	6.4	18	9.3	8	9.3			х	х
07 051 008	AB 50 TWIN	2.4-2.1	140	380	170	22	6.4	18	9.3	8	9.3		х	х	х
07 051 009	AB 50-2 TWIN	2.4–2.1	140	640	280	22	6.4	18	9.3	8	9.3		х	х	х
				Values in nominal load range at 960 rpm and sw of 8 mm		Acceleration > 9.3 g is not recommended					٨	Naterial	structur	e	

OSTA

and sw of 8 mm


These types can be combined with one another (identical heights and operation behaviour)


- * compression load Gmax. and final cold flow compensation (after approx. 1 year).
- ** separate assembly instructions are available, please ask for details.


Oscillating Mountings Type AB-HD

AB-HD 50-1.6

AB-HD 38

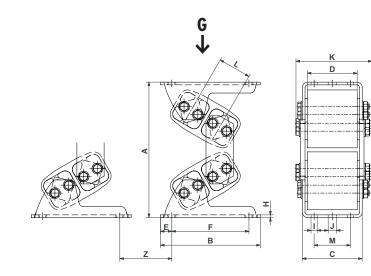
gs		
Mountin		A
bu	new	07
	new	07
	new	07
SC	Ť	07
		07

	Art. No.	Туре	Load capacity Gmin. – Gmax. [N]	A un- loaded	A* max. load	B un- loaded	B* max. load	С	D	E	F	Н	K	L	м	Ν	Weight [kg]
new	07 051 070	AB-HD 27	500 - 1′250	215	182	59	78	70	ø11	80	105	4.5	17	60	80	-	1.6
new	07 051 070 07 051 071 07 051 072	AB-HD 38	1′200 – 2′500	293	246	79	106	95	ø13	100	125	6	21	80	104	40	4.9
new	07 051 072	AB-HD 45	2′000 – 4′200	346	290	98	130	110	13×20	115	145	8	28	100	132	65	11.3
	07 051 062	AB-HD 50	3′500 – 8′400	376	313	105	141	120	17×27	130	170	12	40	120	165	60	22.7
	07 051 063	AB-HD 50-1.6	4′800 - 11′300	376	313	105	141	120	17×27	130	170	12	40	160	205	70	27.1
	07 051 060	AB-HD 50-2	6′000 – 14′000	376	313	105	141	120	17×27	130	170	12	45	200	250	70	35.5

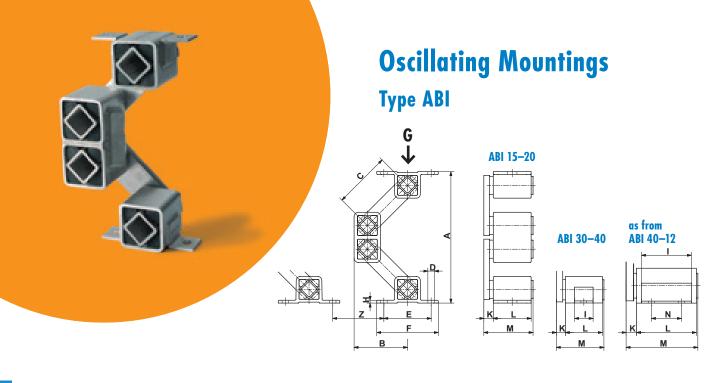
	Art. No.	Туре	Natural frequency GminGmax. [Hz]	Z**	Dynamic s cd vertical [N/mm]	pring value cd horizontal [N/mm]	720 sw max. [mm]		ty limits l 960 sw max. [mm]	1	ent rpm 1440 sw max. [mm]		Light metal profile	Steel welded construction	Nodular cast iron	ROSTA blue painted
new	07 051 070	AB-HD 27	4.8 - 3.1	70	70	33	12	3.5	10	5.2	8	9.3	х	х		х
new	07 051 070 07 051 071 07 051 072	AB-HD 38	3.6 – 2.7	90	100	48	15	4.3	13	6.7	8	9.3	х	х		х
new	07 051 072	AB-HD 45	3.3 – 2.5	100	150	72	17	4.9	14	7.2	8	9.3	х	х	х	х
	07 051 062	AB-HD 50	3.2 - 2.4	120	270	130	18	5.2	15	7.7	8	9.3			х	х
	07 051 063	AB-HD 50-1.6	3.2 - 2.4	120	360	172	18	5.2	15	7.7	8	9.3		х	х	х
	07 051 060	AB-HD 50-2	3.2 - 2.4	120	450	215	18	5.2	15	7.7	8	9.3			х	х
					range at 9	Values in nominal load range at 960 rpm and sw of 8 mm			ccelerati not reco		<u> </u>		٨	Naterial	structur	·e

Please find elements for higher load capacities on page 2.17.

These types can be combined with one another (identical heights and operation behaviour)


* compression load Gmax. and final cold flow compensation (after approx. 1 year).

Oscillating Mountings Type AB-D


Art. No.	Туре	Load capacity Gmin. – Gmax. [N]	A un- loaded	A* max. load	В	С	D	E	F	н	I	J	K	L	м	Weight [kg]
07 281 000	AB-D 18	500 - 1'200	137	112	115	61	50	12.5	90	3	9	9	74	31	30	1.3
07 281 001	AB-D 27	1′000 – 2′500	184	148	150	93	80	15	120	4	9	11	116	44	50	2.9
07 281 002	AB-D 38	2′000 – 4′000	244	199	185	118	100	17.5	150	5	11	13.5	147	60	70	7.5
07 281 003	AB-D 45	3′000 – 6′000	298	240	220	132	110	25	170	6	13.5	18	168	73	80	11.5
07 281 004	AB-D 50	4′000 – 9′000	329	272	235	142	120	25	185	6	13.5	18	166	78	90	17.9
07 281 005	AB-D 50-1.6	6′000 – 12′000	329	272	235	186	160	25	185	8	13.5	18	214	78	90	24.5
07 281 006	AB-D 50-2	8′000 – 16′000	329	272	235	226	200	25	185	8	13.5	18	260	78	90	29.0

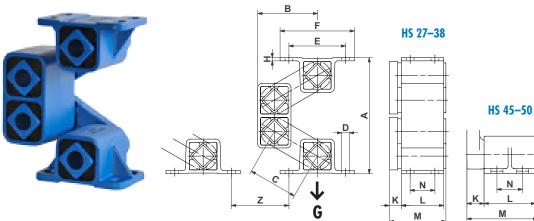
		Natural		Dynar	Dynamic spring value			Capacity limits by different rpm 720 min ⁻¹ 960 min ⁻¹ 1440 min ⁻¹							st iron	painted
Art. No.	Туре	frequency GminGmax. [Hz]	Z**	cd vertical [N/mm]	cd at sw [mm]	cd horizontal [N/mm]	sw max. [mm]	K max. [-]	sw max. [mm]	K max. [-]	sw max. [mm]	K max. [-]	Light metal profile	Steel plate	Nodular cast	ROSTA blue
07 281 000	AB-D 18	6.1–4.4	30	100	4	20	5	1.4	5	2.6	4	4.6	х	х		х
07 281 001	AB-D 27	5.4–3.9	35	160	4	35	7	2.0	6	3.1	5	5.8	х	х		partial
07 281 002	AB-D 38	4.3-3.4	40	185	6	40	9	2.6	8	4.1	6	7.0	х	х		partial
07 281 003	AB-D 45	3.7–3.1	55	230	8	70	11	3.2	9	4.6	7	8.1	х	х		partial
07 281 004	AB-D 50	3.7–2.9	55	310	8	120	12	3.5	10	5.2	8	9.3	х	х	х	х
07 281 005	AB-D 50-1.6	3.6–2.9	55	430	8	160	12	3.5	10	5.2	8	9.3	х	х	х	х
07 281 006	AB-D 50-2	3.5–2.8	55	540	8	198	12	3.5	10	5.2	8	9.3	х	х	х	х
				Values in nominal load range at 960 rpm			Acceleration > 9.3 g is not recommended						Naterial c-plated			

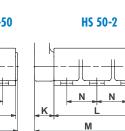
These types can be combined with one another (identical heights and operation behaviour)

* compression load Gmax. and final cold flow compensation (after approx. 1 year).

Art. No.	Туре	Load cap Gmin. – G [N]	èmax.	A un- loaded	A* max. load	B un- loaded	B* max. load	С	D	E	F	Н	I	K	L	м	Ν	Weight [kg]
07 171 107	ABI 15	70 -	180	167	114	70	88	80	7 x 10	50	65	3	-	10	40	52	-	0.7
07 171 108	ABI 20	160 -	460	214	147	89	111	100	9 x 15	65	85	3	-	14	50	67	-	1.6
07 171 103	ABI 30	400 -	1′000	241	176	99	121	100	ø11	85	110	4	35	17	70	90	-	3.3
07 171 104	ABI 40	700 -	1′600	317	237	128	155	125	ø 13	115	150	4	40	21	80	104	-	7.9
07 171 106	ABI 40-12	1′300 –	3′200	281	214	111	133	100	ø13	115	150	4	100	21	120	144	60	11.3
07 171 105	ABI 50	2′500 –	6′800	372	274	151	184	150	ø 18	140	180	5	120	33	150	187	70	14.3

		Natural		Dynamic s	pring value	Capacity limits by d 720 min ⁻¹ 960 min ⁻¹			· · ·			steel onstruction	steel	
Art. No.	Туре	frequency GminGmax. [Hz]	Z**	cd vertical [N/mm]	cd horizontal [N/mm]	sw max. [mm]	K max. [-]	sw max. [mm]	K max. [-]	sw max. [mm]	K max. [-]	Stainless st welded con	Stainless st casting	Unpainted
07 171 107	ABI 15	4.0-2.8	65	10	6	14	4.1	12	6.2	8	9.3	х	x	х
07 171 108	ABI 20	3.6-2.4	80	22	14	17	4.9	15	7.7	8	9.3	х	х	х
07 171 103	ABI 30	3.5–2.6	80	48	27	17	4.9	14	7.2	8	9.3	х		х
07 171 104	ABI 40	3.0-2.4	100	60	30	20	5.8	17	8.8	8	9.3	х		х
07 171 106	ABI 40-12	3.4–2.6	90	115	55	16	4.6	13	6.7	8	9.3	х		х
07 171 105	ABI 50	2.8-2.2	140	220	100	22	6.4	18	9.3	8	9.3	х		х
				range at 9	ominal load 60 rpm and 8 mm			ccelerati not recc				Mat	erial struct	ure


Description of stainless steel: X5CrNi18-10 (1.4301) and GX5CrNi19-10 (1.4308)


* compression load Gmax. and final cold flow compensation (after approx. 1 year).

Oscillating Mountings Type HS

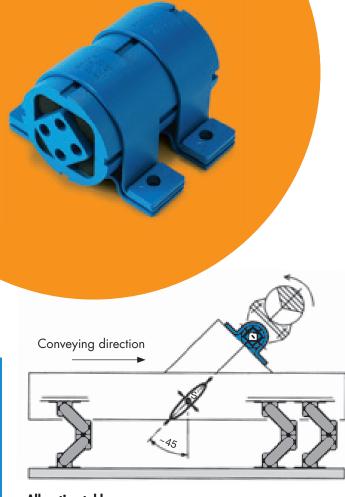
Art. No.	Туре	Load capacity Gmin. – Gmax. [N]	A un- loaded	A* max. load	B un- loaded	B* max. load	С	D	E	F	н	К	L	м	N	Weight [kg]
07 311 001	HS 27	500 - 1'250	164	202	84	68	70	11	80	105	4.5	17	60	80	35	1.6
07 311 002	HS 38	1′200 – 2′500	223	275	114	92	95	13	100	125	6	21	80	104	40	4.9
07 311 003	HS 45	2′000 – 4′200	265	325	138	113	110	13×20	115	145	8	28	100	132	65	11.3
07 311 004	HS 50	3′500 – 8′400	288	357	148	118	120	17×27	130	170	12	40	120	165	60	20.2
07 311 005	HS 50-2	6′000 - 14′000	288	357	148	118	120	17 x 27	130	170	12	45	200	250	70	34.0

		Natural		Dynamic spring value		Capacity limits by different rpm 720 min ⁻¹ 960 min ⁻¹ 1440 min ⁻¹					profile	⊸ -	st iron	painted	
Art. No.	Туре	frequency GminGmax. [Hz]	Z**	cd vertical [N/mm]	cd horizontal [N/mm]	sw max. [mm]	K max. [-]	sw max. [mm]	K max. [-]	sw max. [mm]	K max. [-]	Light metal	Steel welded construction	Nodular cast	ROSTA blue
07 311 001	HS 27	4.2-3.8	70	65	32	12	3.5	10	5.2	8	9.3	х	х		х
07 311 002	HS 38	3.6–3.3	90	95	46	15	4.3	13	6.7	8	9.3	х	х		х
07 311 003	HS 45	3.3–3.0	100	142	70	17	4.9	14	7.2	8	9.3	х	х	х	х
07 311 004	HS 50	3.2-3.0	120	245	120	18	5.2	15	7.7	8	9.3			х	х
07 311 005	HS 50-2	3.2–2.9	120	410	200	18	5.2	15	7.7	8	9.3			х	х
				range at 9	ominal load 60 rpm and ² 8 mm			ccelerati not recc		<u> </u>		٨	Material	structur	e

The HS Mountings shall be fastened with the foreseen amount of screws (existing fixation holes or slots) of quality 8.8 with consideration of the prescribed fastening torque.

These types can be combined with one another (identical heights and operation behaviour)

* tensile load Gmax. and final cold flow compensation (after approx. 1 year).

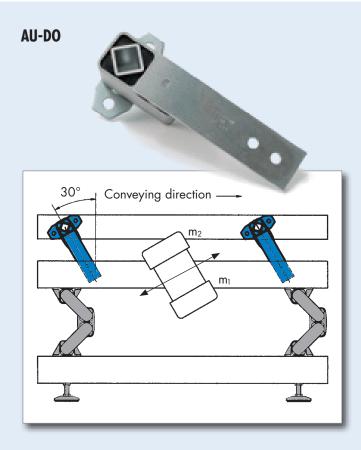

Pendulum joint, the cost-efficient drive solution with only one unbalanced motor

If a single vibration motor is built onto an elastic pendulum joint (e.g. a DK element), the device will carry out a slightly elliptical oscillation shape (linear movement). The final oscillation motion is dependent on the distance between pendulum axis and motor axis. The pendulum suspension has only been used on rather smaller feeding devices. The inclination angle of the motor configuration is approx. 45°.

ROSTA components for pendulum mounts are mentioned in the general catalogue "Rubber suspension units".

Allocation table

Art. No. DK	Туре	Centrifugal force max.	Number of brackets	Туре	Art. No. BK
01 071 008	DK-A 27 x 60	1′000 N	1	BK 27	01 520 004
01 071 011	DK-A 38 x 80	2′000 N	2	BK 38	01 520 005
01 071 014	DK-A 45 x 100	3′500 N	2	BK 45	01 520 006
01 071 015	DK-A 45 x 150	5′250 N	3	BK 45	01 520 006
01 071 017	DK-A 50 x 200	10'000 N	3	BK 50	01 520 007
01 071 018	DK-A 50 x 300	15′000 N	4	BK 50	01 520 007


Suspensions of spiral or coil feeders

Spiral-shaped conveyors are used in processing systems where bulk goods should stay on the conveying trough in the smallest possible space for a long period in order to cool down or dry. Not infrequently, the resulting channel length can be 25-30 meters in a spiral tower that is only five meters high! With a spiral conveyor supported on ROSTA Oscillating Mountings Type AB-D, there is no need for additional fall-prevention devices such as cable bracings or securing pipes in the spiral, as is the case for helical spring supports. If a spring breaks here, the complete spiral tower tilts – unless it has been secured with cable bracings.

ROSTA AB-D suspensions offer a high isolation effect, clearly defined oscillations up to the topmost spiral and absolute stability for the spiral tower.

www.rosta.com

The AU-DO rocker suspensions have been mainly developed for the channel support in continuously loaded, base frame excited two-mass oscillation systems with unbalanced drive (energetic amplification). The base frame m₁ is excited by means of unbalanced motors and the spring accumulators of the AU-DO rocker suspensions amplify the marginal frame oscillation amplitude into a considerable throw amplitude on the conveying channel m₂. The base frame is ideally supported on ROSTA Oscillating Mountings Type AB. These systems are characterised by low, hardly measurable residual force transmission into the substructure and are therefore suitable for installation on steel frameworks and intermediate floors in processing buildings. Additional customer benefits are the low-noise operation, the low involved motor power and the simple installation.

The AU-DO elements are available in 5 sizes. We will be glad to calculate your specific system, please ask for our relevant questionnaire.

Customized Oscillating Mountings Type AB-HD with low natural frequency and high load capacity

	Туре	Load capacity Gmin. – Gmax. [N]	Natural frequency GminGmax. [Hz]	Element height unloaded [mm]	Food print according *	* DW-A elements are mentioned in the general catalogue "rubber suspension units".
	AB-HD 70-3	9′000 – 20′000	2.4 - 2.1	592	DW-A 70×300	
new	AB-HD 100-2.5	10′000 – 25′000	2.2 - 1.8	823	DW-A 100×250	Please ask for the separate
new	AB-HD 100-4	16′000 – 40′000	2.2 - 1.8	823	DW-A 100×400	drawings.

Vegetable-feeder on stainless steel ABI Mountings

Washing- and dewatering-screen for vegetables on AB Mountings

Circular motion screen for minerals on AB TWIN Mountings

Circular motion screen for gravel on AB TWIN Mountings

Fluid-bed cooler on AB-D Mountings

Pre-selection screen for gemstone on AB Mountings

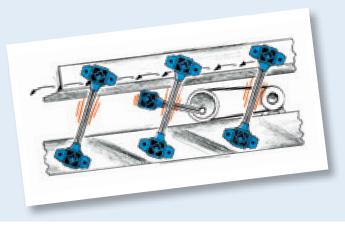
Wheat-cleaning plant on AB Mountings

Pasta-feeding channel hanging on HS Mountings

Technology of crank shaft driven shaker conveyors

Introduction

Oscillating shaker conveyors with crank shaft drive are widely used for the transportation and selection of bulk material. A shaker conveyor consist of a heavy and (infinitely) stiff designed shaker and/or screening trough, which is supported by several pairs of guiding rocker arms. The rocker arms are also connected with the lower base frame which is anchored in the building foundation by means of tie bolts. The eccentric shaft transmitting the oscillations to the trough is always driven by elastic belt drive to compensate the hits by the dead centers of the crank shaft drive. A driving rod with an elastic drive head connects the crank drive with the base frame of the trough and transmits the required oscillations for the transport of the bulk material on the feeder. According to the length, stiffness and weight of the shaker trough several pairs of supporting and guiding rocker arms are required between base frame and conveyor.

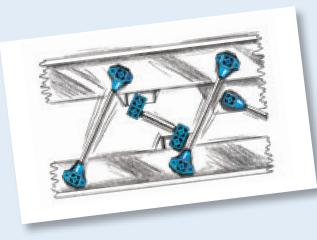

Relatively **slow** acting oscillating conveyors are usually designed as positive movement systems ("brute-force" systems) transmitting the high reaction forces of the crank reverse motion into the building foundation. Faster running shaker conveyors with crank shaft drive are therefore usually designed as two mass systems with direct compensation of the reaction forces by the counter-mass hanging at the lower end of so said double rocker arms directly underneath the trough mass ("fast-runner" systems).

To achieve a very "smooth" course of motions on **fast** acting shaker conveyors based on one or two masses the installation of additional **spring accumulators** offering an actuation of the shaker system close by the resonance frequency ("natural frequency" systems) is recommended. These pre-loaded spring accumulators compensate the hard hits of the crank shaft drive at the dead centers and are heavily supporting the eccentric trough motion with their high dynamic stiffness.

One mass shaker conveyor systems without spring accumulators

Design	Characteristics	ROSTA elements
"brute-force" system as basic version	acceleration: 1.1 to 1.7 g-forces conveying speed: 6 to 15 m/min trough lengths: max. 12 to 15 meters	oscillating mountings: AU, AS-P, AS-C, AR drive heads: ST

The "brute-force" shaker conveyor system is widely used in the processing industries due to its constructive simplicity and cost efficient design method. It characterizes by a massive feeding trough mounted on several pairs of guiding rocker arms connected with a ground frame and driven by a crank shaft system. The relatively low costs for the design and construction of this feeding system are favouring this standard shaker for the use in many processing operations where rather low material speeds are fully adequate. Too high speeds and too long strokes would generate in this one mass system too high shocks by the change in direction of the crank shaft drive. Therefore, accelerations of >1,7 g-forces are not applicable with this "brute-force" shaker. To avoid high material fatigue stress on the trough structure, the relevant design should feature heavy stiffening rips and border strips to make the feeding channel more or less "infinitely" stiff. One mass shaker conveyors have to be bolted down on the foundations by means of tie anchors.

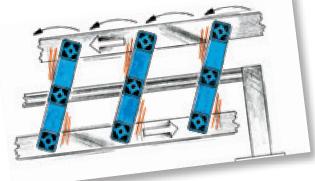


www.rosta.com

One mass shaker conveyor systems equipped with spring accumulators

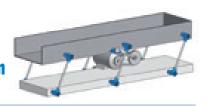
Design	Characteristics	ROSTA elements
90	acceleration: 1.1 bis 2.2 g-forces	oscillating mountings: AU, AS-P, AS-C, AR
1518 000	conveying speed: 6 to 22 m/min	drive heads: ST
"natural frequency" system offering smooth course	trough lengths: up to 20 meters	spring accumulators: DO-A elements

These "natural frequency" feeding system generally shows the same constructive design like the "brute-force" shaker, but is disposed with additional spring accumulator sets installed between trough structure and ground frame in order to reduce the hard hits by the change in direction of the crank shaft drive. Furthermore, due to the high dynamic stiffness of the spring accumulator sets, the course of motions of the trough becomes harmonic, energy-saving and gentle avoiding material stress and early fatigue cracks on the structure. This system runs very silent due to the permanent, bidirectional spring action support at the stroke ends. The max. acceleration of this one mass system should not exceed 2.2 g-forces. The quantity and size of the required spring accumulators depends on the trough weight and the relevant rpm's of the crank shaft drive.



Two mass shaker conveyor systems with direct reaction force-compensation

Design	Characteristics	ROSTA elements
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	acceleration: 1.5 to 5.0 g-forces	oscillating mountings: AD-P, AD-C, AR
	conveying speed: 10 to 45 m/min	drive heads: ST
"fast-runner" system offering high capacities	trough lengths: up to 20 meters	spring accumulators: additional DO-A elements


This system is the "fast-runner" among the crank shaft driven shaker conveyors offering a very high material throughput. The lower counter-mass frame, directly connected with the feeding trough by means of ROSTA double rocker arms, fully compensates the resulting inertia forces of the mass 1 (trough) provided that its overall weight is identical with the trough weight. The upper shaker trough and also the counter-mass frame (or trough) offer a **procedural** field of applications. Both are feeding bulk material in the same direction; e.g. adding a sieve fraction in the upper trough bottom the small particles are sorted out and drop on the lower counter-mass or counter-trough being also shaken to the discharge-end of the machine.

For the most part, these two mass high-speed shaker conveyors are designed as smooth running "natural frequency" systems. Adding a quantitatively sufficient number of double rocker arms between trough, machine frame and counter-mass, the resulting high dynamic stiffness of the elastic suspensions keeps the shaker machine running close to the natural frequency of the rocker arms. Otherwise, also by installing some additional DO-A spring accumulators between machine frame and trough or between machine frame and counter-mass a natural frequency acting of the system can be attained.

1. One mass systems without spring accumulators: Calculation

	Subject	Symbol	Example
Length, weight	Trough length Weight empty trough Weight of feeding material Material coupling factor 50% * Weight of oscillating mass *	$L m_0$ m_m $m = m_0 + m_m$	2.5 m 200 kg 50 kg 25 kg 225 kg
Drive parameter	Eccentric radius Stroke Rpm on trough Gravity acceleration Oscillating machine factor Acceleration Total spring value of system	R $sw = 2 \cdot R$ n_{s} g K $a = K \cdot g$ c_{t}	12 mm 24 mm 340 min ⁻¹ 9.81 m/s ² 1.6 1.6 g 285 N/mm
Rocker arms	Distance between rockers max. Quantity of rockers Load per rocker Selection osc. elements (e. g.) Selection ROSTA-elements: Al Center distance of elements	L _{max} g U, AR, AS-P, AS-C A	1.5 m 6 368 N 12× AU 27 200 mm
Drive	Acceleration force Selection drive head Drive capacity approx.	F	3423 N 1× ST 45 1.0 kW
Spring value	Dynamic torque Dynamic spring value per rocker Dynamic spring value of all rockers Resonant ability factor	Md _d c _d z · c _d i	2.6 Nm/° 7.4 N/mm 44.7 N/mm 0.16

Calculation formulas

Oscillating machine factor $K = \frac{\left(\frac{2\pi}{60} \cdot n_{s}\right)^{2} \cdot R}{g \cdot 1000} = \frac{n_{s}^{2} \cdot R}{894'500}$

Total spring value (machine) $C_t = m \cdot \left(\frac{2\pi}{60} \cdot n_s\right)^2 \cdot 0.001$

Quantity of rockers

 $z = round up \left(\frac{L}{Lmax} + 1\right) \cdot 2$

Load per rocker

 $G = \frac{m \cdot g}{z}$

Acceleration force (ST selection)

 $F = m \cdot R \cdot \left(\frac{2\pi}{60} \cdot n_s\right)^2 \cdot 0.001 = c_t \cdot R$

Drive capacity approx.

 $P = \frac{F \cdot R \cdot n_s}{9550 \cdot 1000 \cdot \sqrt{2}}$

Resonant ability factor

$$= \frac{z \cdot c_d}{c_t}$$

* the following factors have to be considered by the definition of the material coupling:


- high coupling factor or sticking of wet and humid material

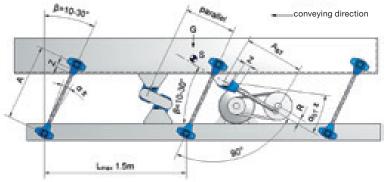
- possible stemming of the trough

2. One mass system with spring accumulators: Calculation

Calculation analog chapter 1 with following additions:

ulators	Quantity	Zs	2
	Dyn. spring value per item	Cs	100 N/mm
accum	Dyn. spring value of all items	$Z_s \cdot C_s$	200 N/mm
	Resonant ability factor	is	0.86
Spring	Selection of accumulators	2x cons. o	f 2x DO-A 45 x 80

Resonant ability factor with accumulators


```
i_s = \frac{z \cdot c_d + z_s \cdot c_s}{c_s}
```

By a resonant ability factor i_s ≥0.8 the system is usually titled "natural frequency shaker".

Oscillating Mountings

3. One mass shaker conveyor systems: Installation instructions

Distance between rockers L_{max}:

- Usually, the distance between the rocker arms on the trough alongside is up to 1.5 meters, depending on the stiffness of the trough.
- By trough widths >1.5 m we do recommend to provide the trough bottom side with a third, centrical row of rocker arms for stability reasons.

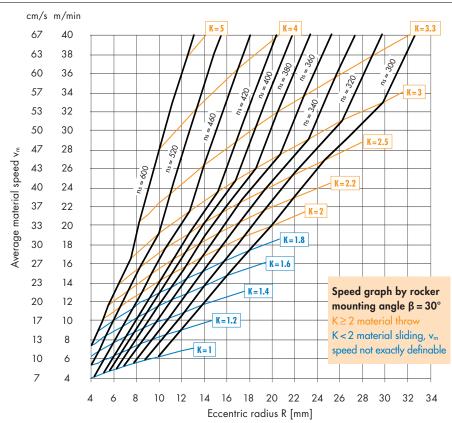
Mounting position drive head ST:

For one mass shaker systems it is recommendable to position the drive head slightly ahead of the center of gravity of the trough, towards the discharge end.

Rocker mounting angle β:

According to the relevant processing function of the shaker conveyor, the rocker arms are positioned at mounting angles between 10° to 30° in relation to the perpendicular line. (The ideal combination of fast conveying speed with high material throw is given by a rocker inclination angle of 30°.) The power input position of the drive-rod from the eccentric drive should stay at right angles to the rocker arms, this orthogonal positioning offers a harmonic course of the drive system.

Angle of oscillation α:


The machine parameters, angle of oscillation and revolutions should be determined in the admissible area of operations (see chapter 5).

Screw quality:

The screw quality should be grade 8.8 secured by the required tightening moment.

Depth of thread engagement Z:

The depth of engagement should be at least 1.5 x the thread nominal width.

4. Average material speed on shakers v_m

Main influence factors

- layer height of material
- property trough bottom (slipresistance)
- mounting angle β of the rockers
- feeding capability of the material depending on size, form and humidity of the grains, e.g. very dry and fine grained material is submitted to slippage factors up to 30%.

Example: One mass system with eccentric drive

Out of the intersection point R = 12 mm and the revolutions $n_s = 340 \text{ min}^{-1}$ is resulting a theoretical material speed of $v_m = 12 \text{ m/min}$ or 20 cm/sec.

By acceleration factors **K** > **2** and rocker mounting angles of β = **30**° (to the perpendicular line) the vertical acceleration is getting bigger than 1 g, therefore the material starts lifting from the trough bottom = material throw.

5. Maximum rocker load G, revolutions \textbf{n}_{s} and angle of oscillation α

Size	mo	ıx. load capac	ity per rocker	[N]	max. revolutio	ons n _s [min ⁻¹] *
(e.g. AU 15)	K < 2	K = 2	K = 3	K = 4	$\alpha \pm 5^{\circ}$	$\alpha \pm 6^{\circ}$
15	100	75	60	50	640	480
18	200	150	120	100	600	450
27	400	300	240	200	560	420
38	800	600	500	400	530	390
45	1′600	1′200	1′000	800	500	360
50	2′500	1′800	1′500	1′200	470	340
60	5′000	3′600	3′000	2′400	440	320

The angle of oscillation α of each oscillating component (rockers accumulators and drive head) has to be settled within the permissible range (n_s and α).

Calculation oscillation angle for rockers

Eccentric radius R [mm]	,	
Center distance A [mm]	$\alpha = \arctan(\alpha)$	<u></u>
Oscillation angle $\alpha \pm [\circ]$	\	A /

m

Please contact ROSTA for the permissible load indications by higher accelerations and for rocker elements offering higher load capacities. Usually are the revolutions n_s between 300 to 600 min⁻¹ and the oscillation angles max. $\pm 6^\circ$.

* basics: "permissible frequencies" in the Technology part of the ROSTA catalogue.

6. Two mass shaker systems with direct reaction force-compensation

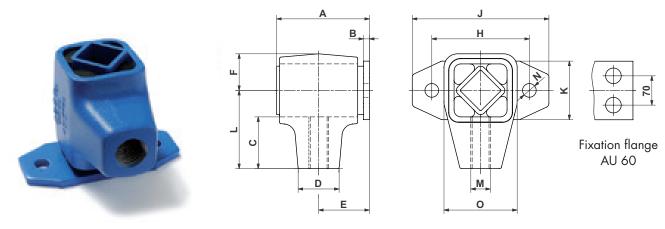
 $c_{d} = \frac{3 \cdot Md_{d} \cdot 360 \cdot 1000}{2 \cdot A^{2} \cdot \pi}$

[N/mm]

- Maximum acceleration forces of approx. 5 g, shaker lengths up to 20 meters
- Equipped with ROSTA double rockers AD-P, AD-C and/or made out of AR elements
- Ideal compensation when $m_1 = m_2$
- Element selection analogue chapter 1, but with load of the two masses: Actuated mass (+ material coupling of feeding mass) m₁ [kg] Driven mass (+ material coupling of feeding mass) m₂ [kg] Total oscillating mass m = m₁ + m₂ [kg]

Dynamic spring value c_d per double rocker

- Calculation of c_t and F based on the total mass (m_1 and m_2)
- Power input from eccentric drive with ST arbitrary on m₁ or m₂ at any point alongside m₁ or m₂
- On demand, special double rocker arms with varying center distances A are available as "customized rockers"

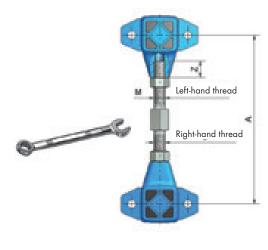

The 9 installation steps for a two mass system with double rocker arms:

- 1. All fixation holes for the rockers in trough, counter-mass and machine frame have to be drilled very accurately previous the final machine assembling.
- 2. Installation of the middle elements of the rocker arms on the central machine frame, all inclination angles duly adjusted (e.g. 30°), tightening of the screws with required fastening torque.
- 3. Lifting of the counter-mass with accurate horizontal alignment until the bores in the counter-mass frame stay congruent with the bore holes of the lower element. Jamming of the counter-mass with e.g. wooden chocks.
- 4. Tightening of the fixation screws on counter-mass with required fastening torque.
- 5. Inserting of the feeding trough into machine frame structure. Accurate horizontal alignment until the bores in the trough stay congruent with the bore holes of the upper element. Jamming of the trough with e.g. wooden chocks.
- 6. Tightening of the fixation screws on trough with required fastening torque.
- 7. Installation of the driving rod with drive head ST in "neutral" position i.e. eccentric drive should stay in between the two stroke ends. Length adjustment of the driving rod and tightening of the counternuts.
- 8. Removal of the jamming chocks under counter-mass and trough.
- 9. Test start of the shaker conveyor.

www.rosta.com

Oscillating Mountings Type AU

Art. No.	Туре	G [N] K<2	Mdd [Nm/°]	A	В	С	□D	E	F	н	J	К	L	м	øN	0	Weight [kg]	Mate struc	
07 011 001 07 021 001	AU 15 AU 15L	100	0.44	50	4	29	20	28	17	50	70	25	40	M10 M10-LH	7	33	0.2		painted
07 011 002 07 021 002	AU 18 AU 18L	200	1.32	62	5	31.5	22	34	20	60	85	35	45	M12 M12-LH	9.5	39	0.4	casting	blue pair
07 011 003 07 021 003	AU 27 AU 27L	400	2.6	73	5	40.5	28	40	27	80	110	45	60	M16 M16-LH	11.5	54	0.7	light metal c	ROSTA b
07 011 004 07 021 004	AU 38 AU 38L	800	6.7	95	6	53	42	52	37	100	140	60	80	M20 M20-LH	14	74	1.6	light	
07 011 005 07 021 005	AU 45 AU 45L	1′600	11.6	120	8	67	48	66	44	130	180	70	100	M24 M24-LH	18	89	2.6		construction,
07 011 006 07 021 006	AU 50 AU 50L	2′500	20.4	145	10	69.5	60	80	47	140	190	80	105	M36 M36-LH	18	93	6.7	ar cast	welded
07 011 007 07 021 007	AU 60 AU 60L	5′000	38.2	233	15	85	80	128	59	180	230	120	130	M42 M42-LH	18	116	15.7	Nodular	Steel

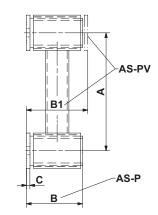

G = max. load in N per element or rocker, by higher accelerations K, consult chapter 5 on page 2.24. Mdd = dynamic element torque in Nm/° by oscillation angles $\alpha \pm 5^{\circ}$ in speed range of n_s = 300 - 600 min⁻¹.

Connection rod

All connection rods have to be provided by the customer. It is recommendable to use rods with right-hand and left-hand threaded fixation stubs and also ROSTA AU elements with right-hand and left-hand threads. In this combination the rocker length or center distance can be adjusted infinitely. In using only right-hand threaded rods, the final length adjustment of the rockers is less accurate – especially by the fine tuning of the shaker course it requires an exact length adjustment of all rocker arms to avoid lateral sliding of the trough.

The center distance A has to be identical by all attached rocker arms. The depth of thread engagement Z has to be at least $1.5 \times M$.

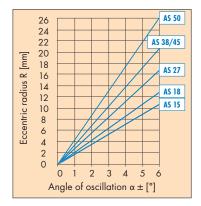
Further basic information and calculations on pages 2.22-2.24.


Single Rockers

κ

D

Ε

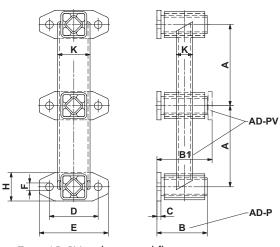


Type AS-PV with inverted flange

Art. No.	Туре	G [N] K<2	Cd [N/mm]	A	В	B1	С	D	E	øF	Н	øK	Weight [kg]	Material structure
07 081 001 07 091 001	AS-P 15 AS-PV 15	100	5	100	50 -	- 56	4	50	70	7	25	18	0.5	
07 081 002 07 091 002	AS-P 18 AS-PV 18	200	11	120	62 -	- 68	5	60	85	9.5	35	24	0.8	
07 081 003 07 091 003	AS-P 27 AS-PV 27	400	12	160	73 -	- 80	5	80	110	11.5	45	34	1.8	Steel welded
07 081 004 07 091 004	AS-P 38 AS-PV 38	800	19	200	95 -	- 104	6	100	140	14	60	40	3.6	constructions, ROSTA blue painted
07 081 005 07 091 005	AS-P 45 AS-PV 45	1′600	33	200	120	- 132	8	130	180	18	70	45	5.5	
07 081 006 07 091 006	AS-P 50 AS-PV 50	2′500	37	250	145 -	- 160	10	140	190	18	80	60	8.3	

		G [N]	Cd			0				Weight	Materia	l structure
Art. No.	Туре	K<2	[N/mm]	A	В	D _{-0.3}	øE	øK	□S	[kg]	Inner square	Housing
07 071 001	AS-C 15	100	5	100	40	45	10 +0.4 +0.2	18	15	0.4		
07 071 002	AS-C 18	200	11	120	50	55	13 _{-0.2}	24	18	0.6		Steel welded
07 071 003	AS-C 27	400	12	160	60	65	$16^{+0.5}_{+0.3}$	34	27	1.3	Light metal	construction,
07 071 004	AS-C 38	800	19	200	80	90	20 +0.5	40	38	2.6	profile	ROSTA blue
07 071 005	AS-C 45	1′600	33	200	100	110	24 +0.5	45	45	3.9		painted
07 071 006	AS-C 50	2′500	37	250	120	130	30 +0.5	60	50	6.1		

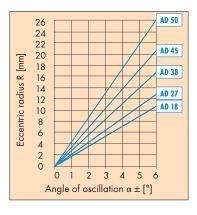
G = max. load in N per rocker, by higher K consult chapter 5 on page 2.24. cd = dynamic spring value by oscillation angles $\alpha \pm 5^{\circ}$ in speed range of ns = 300–600 min⁻¹


www.rosta.com

Further basic information and calculations on pages 2.22–2.24.

Double Rockers

fixation


Type AD-PV with inverted flange

Art. No.	Туре	G K=2		Cd [N/mm]	А	В	B1	С	D	E	øF	Н	К	Weight [kg]	Material structure
07 111 001	AD-P 18	150	120	23	100	62	-	5	60	85	9.5	35	40 x 20	1.2	
07 121 001	AD-PV 18	150	120	23	100	-	68	5	00	00	7.5	35	40 X 20	1.2	
07 111 002	AD-P 27	300	240	31	120	73	-	5	80	110	11.5	45	55 x 34	2.6	
07 121 002	AD-PV 27	300	240	51	120	-	80	5	80	110	11.5	45	JJ X 34	2.0	
07 111 003	AD-P 38	600	500	45	160	95	-	6	100	140	14	60	70 x 50	5.5	Steel welded
07 121 003	AD-PV 38	800	500	45	100	-	104	0	100	140	14	80	70 x 50	5.5	constructions, ROSTA blue painted
07 111 004	AD-P 45	1′200	1′000	50	200	120	-	8	130	180	18	70	80 x 40	8.5	KOSIA bide pullied
07 121 004	AD-PV 45	1 200	1000	50	200	-	132	0	130	160	10	70	60 X 40	0.0	
07 111 005	AD-P 50	1′800	1′500	56	250	145	-	10	140	190	18	80	90 x 50	12.9	
07 121 005	AD-PV 50	1 600	1500	56	230	-	160	10	140	190	18	60	90 X 30	12.9	

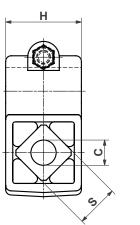
AD-C for frictional center connection

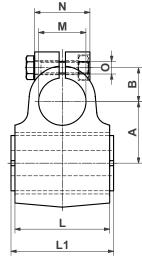
		G	[N]	Cd							Weight	Materia	l structure
Art. No.	Туре	K=2	K=3	[N/mm]	А	В	D _{-0.3} ⁰	øE	К	□S	[kg]	Inner square	Housing
07 101 001	AD-C 18	150	120	23	100	50	55	13 _{-0.2}	40×20	18	0.8		
07 101 002	AD-C 27	300	240	31	120	60	65	16 +0.5 +0.3	55×34	27	1.8	Light metal	Steel welded construction,
07 101 003	AD-C 38	600	500	45	160	80	90	$20 \ _{+0.2}^{+0.5}$	70×50	38	4.1	profile	ROSTA blue painted
07 101 004	AD-C 45	1′200	1′000	50	200	100	110	$24 \begin{array}{c} ^{+0.5}_{+0.2} \end{array}$	80×40	45	6.1		panioa

G = max. load in N per rocker, by different K consult chapter 5 on page 2.24.

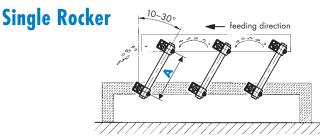
cd = dynamic spring value by oscillation angles $\alpha \pm 5^{\circ}$ in speed range of ns = 300–600 min⁻¹

E


ROSTA

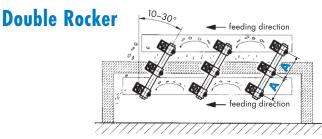

Further basic information and calculations on pages 2.22-2.24.

Oscillating Mountings



Art. No.	Туре	G [N] K<2	Mdd [Nm/°]	A±0.2	В	øC	Н	L	L1 _0.3	øM	N	0	□S	Weight [kg]	Materi Inner square	al structure Housing
07 291 003	AR 27	400	2.6	39	21.5	16 +0.5 +0.3	48	60	65	30	35	M8	27	0.5	Light metal	Light metal
07 291 004	AR 38	800	6.7	52	26.5	20 +0.5 +0.2	64	80	90	40	50	M8	38	1.0	profile	casting, ROSTA blue painted

G = max. load in N per rocker, by higher K consult chapter 5 on page 2.24.


Mdd = dynamic element torque in Nm/° by oscillating angles $\alpha \pm 5^{\circ}$ in speed range of ns = 300–600 min⁻¹

The two AR mounts are inserted on the round connecting tube. The required center distance should be positioned on the straightening plate (parallelism), subsequently tightening of the two collars with the required fastening torque.

Two-Way Rocker

The three AR mounts are inserted on the round connecting tube, with the direction inverted center element. This so said "boomerang"-configuration is offering on the counter-mass trough a direction inverted flow of material, what could simplify selection and screening processing.

The three AR mountings are inserted on the round connecting tube (please check required material thickness by the relevant center distance on below-mentioned table). The counter-mass can be used as second trough with identical feeding direction.

Dimensioning of the connecting tubes

The connecting tubes have to be provided by the customer. For Single Rockers the wall thickness of 3 mm (up to center distance A = 300 mm) is fully sufficient. For Double Rockers, due to resulting shear forces, higher wall thicknesses are required – see below-mentioned table.

Туре	Tube-ø	min. thickness of tube	max. center distance A	min. mounting angle β [°] with two-way rocker
AR 27	30	3 4 5	160 220 300	26.0 19.5 14.6
AR 38	40	3 4 5	200 250 300	27.5 22.6 19.1

Further basic information and calculations on pages 2.22–2.24. By differing center distances A, please consult ROSTA.

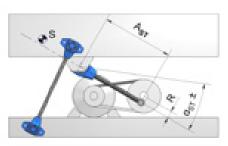
\$16,5

	Art. No.	Туре	F max. [N]	n _s [min ⁻¹] max. α _{st} ±5°	А	В	С	D	E	Н	J +0.5	□K	L	м	□S	Weight [kg]		ateri ructu	
	07 031 001	ST 18	400	600	50	55 _{-0.3}	31.5	45	20	12±0.3	6	22	39	M12	18	0.2			
	07 041 001	ST 18L				-0.3	00							M12-LH		0.2	ß		9
	07 031 002	ST 27	1′000	560	60	65 ⁰ ₋₀₃	10.5	60	27	20 ± 0.4	8	28	54	M16	27	0.4	casting		ainte
	07 041 002	ST 27L	1000	500	00	00 -0.3	40.5	00	2/	20	0	20	54	M16-LH	2/	0.4		<u>e</u>	ba
	07 031 003	ST 38	2′000	530	80	90 ⁰ ₋₀₃	53	80	37	25±0.4	10	42	74	M20	38	1.1	nete	profile	blue
	07 041 003	ST 38L	2 000	530	00	90 -0.3	55	80	3/	Z3 ± 0.4	10	42	74	M20-LH	30	1.1	Light metal		
	07 031 004	ST 45	3′500	500	100	110 _0.3	17	100	44	35±0.5	12	48	89	M24	45	1.8	Lig	-ight metal	STA
	07 041 004	ST 45L	3 500	500	100	110 _{-0.3}	0/	100	44	33 = 0.3	12	48	89	M24-LH	45	1.8		htr	8 D
	07 031 005	ST 50	//000	170	100	100 0	(0 F	105	47	10 . 0.5	1110 10	10	00	M36	50			Ľ.	sing
	07 041 005	ST 50L	6′000	470	120	130 _{-0.3}	69.5	105	47	40±0.5	M12 x 40	60	93	M36-LH	50	5.5			Hous
new	07 031 015	ST 50-2	10/000	170	000	100 0	(0 F	105	47	10 . 0.5	1110 10	10	00	M36	50	(0	Ę		T
new	07 041 015	ST 50-2L	10′000	470	200	130 _0.3	69.5	105	47	40±0.5	M12 x 40	60	93	M36-LH	50	6.9	t iron		
new	07 031 026	ST 60	10/000	1.10	000	010 . 0.2	05	100	50	45	1417	00	117	M42	10	15 /	cast		nted
new	07 041 026	ST 60L	13′000	440	200	210 ± 0.2	85	130	59	45	M16	80	117	M42-LH	60	15.6			paint
new	07 031 016	ST 60-3	00/000		000	010 . 00	05	100	50	4.5		75		M42	10	00.0	Vodular	ē	
new	07 041 016	ST 60-3L	20′000	440	300	310 ± 0.2	85	130	59	45	M16	75	117	M42-LH	60	20.2	Ž	Steel	blue
new	07 031 027	ST 80	07/000	000	000	010 . 00	100	1.00		10		100	150	M52	00	0/7			STA
new	07 041 027	ST 80L	27′000	380	300	310±0.2	100	160	77	60	M20	100	150	M52-LH	80	36.7			ĝ

 $n_s = max.$ revolutions by oscillation angle $\pm 5^\circ$; if osc. angle is below, higher rpm's are applicable, consult "permissible frequencies" in the Technology part of the ROSTA general catalogue.

 F_{max} -> Calculation of the acceleration force F on page 2.22.

Length of driving rod Ast and eccentric radius R

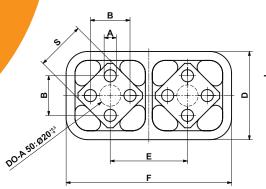

To follow the guidelines of the permissible frequencies the angle of oscillation α_{sT} should not exceed $\pm 5.7^{\circ}$. This angle is corresponding to the ratio R : A_{ST} of 1 : 10.

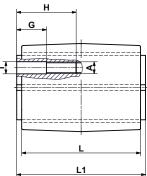
Calculation of the oscillation angle for ST

Eccentric radius	R [mm]	<i>/</i>
Center distance	A _{ST} [mm]	$\alpha_{\rm ST} = \arcsin\left(\frac{\rm R}{\rm A_{\rm ST}}\right)$
Oscillation angle	$\alpha_{st} \pm [\circ]$	(A _{ST})

Installation guidelines

For the installation of the drive heads type ST under the trough-bottom it requires a stiff structure, ideally a heavy and rather long frame construction surrounding the power input from the eccentric drive. Too light and too short mounting structures for the drive heads could be submitted to early material fatigue and generate cracks on the feeding trough. The drive heads have to be installed fully free of play (frictional connection). By multiple power transmission with several drive heads, all driving rods have to be adjusted on exactly the same length. The force transmission from the eccentric drive should stay **right-angled** to the guiding rocker arms. This supports a smooth course of the shaker.





Series connection of 4 pcs. ST 50

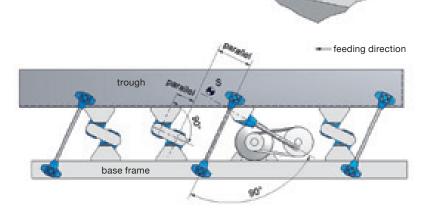
Spring Accumulators Type DO-A

Art. No.	Туре	C, [N/mm]	A	B ±0.5	D	E	F	øl	۵S	G	Н	L	L1_0.3	Weight [kg]	Material structure
01 041 013	DO-A 45 x 80	100	12+8.5	35	85	73	150	_	45	-	-	80	90	1.9	Light metal profile,
01 041 014	DO-A 45 x 100	125	12 0	55	00	/3	150		45	-	-	100	110	2.3	ROSTA blue painted
01 041 016	DO-A 50 x 120	190								30	60	120	130	5.5	Light metal profile,
01 041 019	DO-A 50 x 160	255	M12	40	ca. 89	78	ca. 168	12.25	50	30	60	160	170	7.4	nodular cast iron,
01 041 017	DO-A 50 x 200	320								40	70	200	210	8.5	ROSTA blue painted

 c_s = dynamic spring value of the complete accumulator by oscillating angle of ±5° and revolutions n_s between 300–600 min⁻¹ 1 spring accumulator is always consisting of 2 pcs. DO-A elements!

Operating parameters

Angle of oscillation DO-A	Accumu	ulator cor	ns. of 2 x D	0-A 45	Accumulator cons. of 2 x DO-A 50					
(series connection)	R	sw	max. ns	max. K	R	SW	max. ns	max. K		
±6°	15.3	30.6	360	2.2	16.4	32.8	340	2.1		
±5°	12.8	25.6	500	3.6	13.6	27.2	470	3.4		
±4°	10.2	20.4	740	6.2	10.9	21.8	700	6.0		


Installation guidelines

The connection structures (forks) between the ROSTA DO-A elements have to be provided by the customer. The two side plates have to stay **right-angled** (90°) in regard to the DO-A element axis. It is recommendable to weld a cross bracing (V) between the side plates.

The two DO-A elements of the accumulator have to stay **parallel** to each other and also **parallel** to the rocker arms of the trough. Their fixation on trough and base frame shall be made by means of a stiff fork structure. The fixation of the DO-A elements (on inner element section) shall be made with shoulder studs.

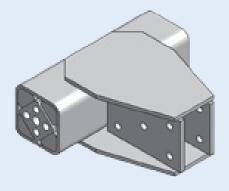
www.rosta.com

Further basic information and calculations on pages 2.22-2.24.

ROSTA Oscillating Mountings and Accessories for Customized Applications

Asymmetrical double rockers for high-speed shaker conveyors

To achieve highest material speed (up to 60 m/min) on shaker conveyors we recommend the installation of ROSTA double rocker arms with **asymmetrical center distances** between the elastic suspensions (ratio 2 : 1). Usually, the eccentric drive-input goes on the counter-mass frame which is connected to the **shorter arm end** and therefore weighs 200% of the upper feeding trough. The trough is connected to the **longer arm end** of the rocker. That is why it describes the **double stroke** in relation to the counter-mass. This gear ratio offers a long material throw on the trough by low reaction-force transmittance on the overall machine structure. Please ask for our special application manual **asymmetrical double rockers.**



Oversized drive heads for heavy-duty crank shaft driven shaker conveyors

The biggest standardized ROSTA drive head type **ST 80** is laid out to transmit acceleration forces up to 27'000 N on shaker troughs. For the actuation of e.g. heavy feeding hoppers or very long wood-waste shaker conveyors this capacity is not sufficient.

For the actuation of very large crank shaft driven shaker conveyors ROSTA also supplys the drive heads type **ST 80-4** and **ST 100-4** with acceleration force capacities F of **36'000 N** respectively **63'000 N** per head. These two heads are all made in steel welded construction and offer instead of the usually centrical tapped bore a **box-shaped holding fixture** for the drive rod (see drawing below). These two drive heads are not available from stock and will be manufactured only upon request (longer delivery time).

ROSTA Oscillating Mountings and Accessories for Customized Applications

ROSTA rocker arms AS-P and AD-P with shifted fixation flanges (30° position)

The fixation flanges of the standardized ROSTA single and double rocker arms type AS-P and AD-P are installed at right angle (90°) to the rocker arm axis. The practical experience showed that most of the shaker manufacturers install the rocker arms at inclination angle of 30° out of the vertical line to obtain an ideal combination of fast material feeding and high screening throw.

In case of very concise mounting conditions with low-pitched feeding troughs and slim machine frames and counter-masses the right-angled fixation flange sometimes protrudes the machine structure – and in extremely crowded constructions a bolted assembly through both flange bores is simply impractical.

For such applications ROSTA offers as **customized parts** AS-P and AS-D rocker arms with fixation flanges staying 30° to the rocker arm axis allowing a very low mounting option of the rockers on trough and frame. Due to the rocker installation **by pairs** it is necessary to order **right** and **left hand** execution of the relevant rocker arms.

ROSTA guiding rods for "Flip-Flow" two mass shaker systems

Free oscillating screening systems with counter-mass frames and directly actuated **flexible screen mats** offer the great benefit of the **mesh self-cleaning.** Furthermore, the flexible mats generate a **very high** and **wide material throw** on the screen deck. In these systems the counter-mass m_2 does usually overswing the screen-box mass m_1 at the ratio of 2 : 1 generating the so-called "Trampoline-Effect" with wide throws and the self-cleaning of the screen meshes. For the elastic suspension and the linear guiding of the counter-mass frames in "Flip-Flow" systems ROSTA offers different guiding-rods and spring accumulators, which are supporting the phase-shifted acting of the two masses. (Please ask for our manual **"Dual Amplifying Systems"**).

www.rosta.com

Two-mass "natural frequency" shaker conveyor equipped with double rocker arms made out in light metal casting

Two-mass shaker conveyor for the transport of bulk material equipped with double rocker arms AD-P 50

One mass shaker conveyor with built-in screening fraction for the

transport and sorting of wood-chips

Stainless steel rocker arms in welded construction supporting a foodstuff shaker conveyor

Two-directional acting seed cleaning machine equipped with AR-"Boomerang" double rocker arms

20-meter long two mass shaker conveyor for tobacco leaves equipped with double rocker arms AD-PV 45

Gyratory sifter machines (plan sifter) Technology

Introduction

Gyratory sifters stay mainly in use in the processing sectors of the flour and grain conditioning, in the pharmaceutical powder preparation and in the chipboard industry for the selection and cleaning of the different wood-chip sizes. The circular screening motion is offering a fast and complete covering of the entire screen surface = very high throughput.

Customized solutions

Gyratory screening machine installed on 8 pcs. AK-I 40 universal joints (joints made out of stainless steel)

Wood-chip sorting screen mounted on 8 pcs. AK 100-4 suspensions

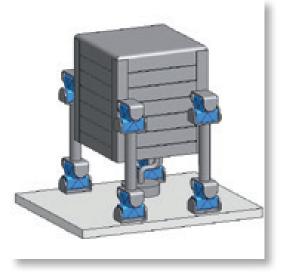
Free oscillating gyratory sifter for the flour selection on 8 pcs. AV 38 elements

www.rosta.com

Hanging gyratory sifters

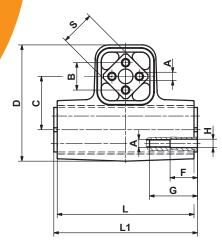
Hanging gyratory sifters are almost exclusively used in the milling sector for the sorting of the different types of flour (white flour, dark flour, black flour). These screens, which are equipped with a central unbalanced shaft, normally hang from the building ceiling on rattan or round fibre-glass rods. Due to the relatively high weight of the screening machines, several rattan or fibre-glass rods are needed at each corner of the box to ensure the suspension. In cases of very high humidity in the buildings, both types of rods can slip out of the clamps. Furthermore, it is very difficult to set it up so that all the rods support approximately the same weight.

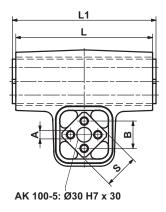
For these applications, ROSTA recommends the use of the AV mounts, which have a very high carrying capacity. Only one mounting set is thereby needed for each corner of the screening box. In addition, the AV mountings can be delivered with right-hand and left-hand threads, which facilitates the horizontal adjustment of the box. The AV mountings have a long service life, and do not have to be periodically replaced, as it is the case with the rattan rods.


Upright staying gyratory sifters with eccentric shaft drive

Upright staying gyratory sifter machines frequently have this classical type of crank drive. These screens are mainly used in the flour processing sector, as well as in chipboard manufacturing plants. An eccentric shaft driven by belts transfers the circular movement to the screen box. The screen box is supported by four legs, each consisting of two ROSTA universal joints. The weight of the box lies completely on the four supports, which accurately guide the box movement.

Upright staying gyratory sifters with unbalanced shaft drive


A very cost-efficient version of the upright staying gyratory sifter. Requires no complicated eccentric drive. The AK mountings or even the AV mountings must be overdimensioned, however, due to the lack of a precisely defined guidance. Please contact ROSTA for projects using upright staying gyratory sifters with unbalanced shaft drive.



Oscillating Mountings for Gyratory Sifters

Type AK – Universal Joints

		Max. load G [N] by system:											-	
Art. No.	Туре	hanging	staying crank driven	staying free oscillating	А	В	С	D	F	G	øΗ	L	L1 ±0.2	□S
07 061 001	AK 15	160	128	80	5 +0.5	10 ±0.2	27	54	-	-	-	60	65	15
07 061 002	AK 18	300	240	150	6 +0.5	12 ± 0.3	32	64	-	-	-	80	85	18
07 061 003	AK 27	800	640	400	8 +0.5	$20 \ ^{\pm 0.4}$	45	97	-	-	-	100	105	27
07 061 004	AK 38	1′600	1′280	800	10 +0.5	$25 \ ^{\pm 0.4}$	60	130	-	-	-	120	130	38
07 061 005	AK 45	3′000	2′400	1′500	12 +0.5	35 ± 0.5	72	156	-	-	-	150	160	45
07 061 011	AK 50	5′600	4′480	2′800	M12	$40 \ ^{\pm 0.5}$	78	172	40	70	12.25	200	210	50
07 061 012	AK 60	10′000	8′000	5′000	M16	45	100	218	50	80	16.5	300	310	60
07 061 013	AK 80	20′000	16′000	10′000	M20	60	136	283	50	90	20.5	400	410	80
07 061 009	AK 100-4	30′000	24′000	15′000	M24	75	170	354	50	100	25	400	410	100
07 061 010	AK 100-5	40′000	32′000	20′000	M24	75	170	340	50	100	25	500	510	100

G = max. load in N per support column

		Weight	Mc	aterial structure		
Art. No.	Туре	[kg]	Inner square	Housing	Protection	Bolting on inner square
07 061 001	AK 15	0.4		Steel welded		
07 061 002	AK 18	0.6		construction		End-to-end screw or
07 061 003	AK 27	1.9	1. I I. M.		ed	threaded bar
07 061 004	AK 38	3.7	Light metal profile		aint	quality 8.8
07 061 005	AK 45	6.7			ROSTA blue painted	
07 061 011	AK 50	11.4		Nodular cast iron	plu	
07 061 012	AK 60	37.4			STA	Shoulder studs
07 061 013	AK 80	85.4	<u> </u>		RC	quality 8.8 for optimizing
07 061 009	AK 100-4	124	Steel			frictional connection
07 061 010	AK 100-5	148		Steel welded construct.		

Usual drive parameters out of practice

- Driving speed ns up to approx. 380 min⁻¹

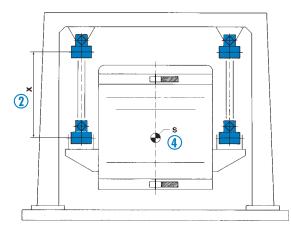
 Oscillation angle α up to approx. ±3.5°

up to approx. ± 3.3

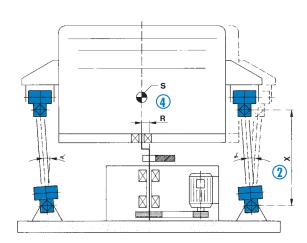
General advises

The operating parameters shall not exceed the guidelines of the "frequency spectrum" in the Technology part of the ROSTA general catalogue.

Calculation Example


Machine type: staying sifter with positive crank drive

Description	Symbol	Technical data	Calculation formula
Total oscillating mass (material included) Eccentric radius Length of support column Angle of oscillation (out of R and X)	m R X α±	1600 kg 25 mm 600 mm 2.4 °	Angle of oscillation $\alpha = \arctan\left(\frac{R}{X}\right)$
Revolutions	n _s	230 min ⁻¹	Load per column
Quantity of support columns	z	4 pcs.	
Load per column	G	3924 N	$G = \frac{m \cdot g}{z}$
Max. load capacity per column with AK 50 mounts	G _{max}	4480 N	

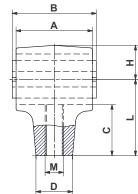

Element selection: 4 columns consisting of 2 pcs. AK 50 \rightarrow 8 psc. AK 50

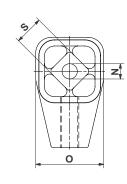
Installation guidelines for AK universal joints

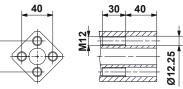
- Install the two AK per column in the same line, in order that the distance X between the two inner squares of the 90° "distorted" element parts and the two inner squares of the "in-line" element parts is identical.
- Install the four identical connection columns (provided by the customer) between the two AK. Also by slightly inclined screen-boxes the distance or length X of the connection columns has to be identical compensate the inclination with e.g. the higher positioning of the fixation brackets by the discharge-end of the screen-box.
- ③ Up to the size AK 50 we do recommend to use our fixation brackets type WS for the AK mounting on machine frame and screen-box – see ROSTA general catalogue "Rubber suspensions".
- ④ To avoid unwanted tilting motions or screen-box distortions (by standstill) we do recommend the installation of the upper AK-brackets on the level of the center of gravity "S" of the screen-box.

Hanging and freely oscillating gyratory sifter

৾


Staying gyratory sifter with positive crank shaft drive





Oscillating Mountings for hanging Gyratory Sifters Type AV

0

Inner square AV 50 and AV 50L

Art. No.	Туре	G [N] per suspension	A	B±0.2	С	□D	Н	L	м	øN	0	⊐S
07 261 001	AV 18	600 - 1′600	40	50 65	40.5	28	27	60	M16	13 _0.2	54	18
07 271 001	AV 18L	000 - 1000	00		40.5	20	27	00	M16-LH	13 -0.2	54	10
07 261 002	AV 27	1′300 – 3′000	80	90	53	42	37	80	M20	16 +0.5	74	27
07 271 002	AV 27L	1 300 - 3 000	80 90		55	42	37	80	M20-LH	10 +0.3	74	27
07 261 003	AV 38	2′600 – 5′000	100	110	67	48	44	100	M24	20 +0.5	89	38
07 271 003	AV 38L	2 800 - 5 000	M24-LF	M24-LH	20 +0.2	07	30					
07 261 004	AV 40	4′500 – 7′500	120	130	69.5	60	47	105	M36	20 +0.5	93	40
07 271 004	AV 40L	4 500 - 7 500	120	130	09.5	00	47	105	M36-LH	20 +0.2	93	40
07 261 005	AV 50	6'000 - 16'000	200	210	0.5	00	50	130	M42		117	50
07 271 005	AV 50L	0000 - 10000	200	210	85	80	59	130	M42-LH	-	116	50

G = max. load in N per suspension Elements for higher load on request

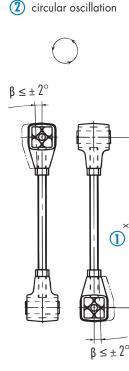
		Weight	Mate	Bolting on inner				
Art. No.	Туре	[kg]	Inner square	Housing	Prot.	square		
07 261 001	AV 18	0.4						
07 271 001	AV 18L	0.4		Light metal casting	blue pair	End-to-end screw or threaded bar quality 8.8.		
07 261 002	AV 27	1.0						
07 271 002	AV 27L	1.0	Light metal profile					
07 261 003	AV 38	1.7						
07 271 003	AV 38L	1.7						
07 261 004	AV 40	4.5	Steel		ROSTA			
07 271 004	AV 40L	4.5	Steel	Nodular cast iron	2			
07 261 005	AV 50	12.3	Links most of most file			M12 shoulder studs		
07 271 005	AV 50L	12.3	Light metal profile			quality 8.8.		

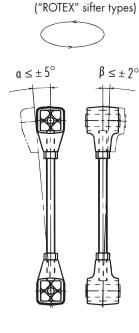
General advises

The operating parameters shall not exceed the guidelines of the "frequency spectrum", see Technology part in the ROSTA general catalogue.

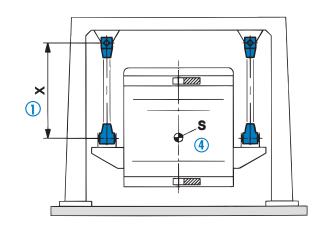
The threaded connection rod has to be provided by the customer.

Calculation Example


Description	Symbol	Technical data	Calculation formula
Total oscillating mass (material included)	m	800 kg	Angle of oscillation
Eccentric radius 2	R	20 mm	$\beta = \arctan\left(\frac{R}{X}\right)$
Length of suspension rod Angle of oscillation (out of R and X), shall not exceed ±2° (2)	X R +	600 mm 19 °	
Revolutions	β± ns	230 min ⁻¹	
Quantity of suspension rods	Z	4 pcs.	Load per suspension rod
Load per suspension rod	G	1962 N	$G = \frac{m \cdot g}{m \cdot g}$
Max. load capacity per rod with AV 27 mountings	G_{max}	3000 N	G =z


Element Selection:

4 pcs. AV 27 and 4 pcs. AV 27 L (left-hand threaded), the two AV elements per suspension rod have to be installed crosswise (90° offset).


Installation guidelines for AV mountings

- (1) With the right-hand and left-hand threaded connection in the AV housing the length X of the suspension rod can easily be adjusted, this length has to be identical for all four suspension rods. The indicated angular oscillating limitations have to be respected!
- Only the crosswise (90° offset) installation of the two AV elements per suspension rod is guaranteeing for a harmonic and circular motion of the screen-box.
- (3) The crosswise installation of the AV elements has to be identical on all four suspension rods, e.g. all upper AV mounts shall stay 90° offset. (For the suspension or support of the discharge-ends of "ROTEX" sifter types the two elements per rod shall stay parallel to each other.)
- (4) To avoid unwanted tilting motions or screen-box distortions (by standstill) we do recommend the installation of the lower AV-brackets on the level of the center of gravity "S" of the screen-box.
- S Please consult ROSTA by the selection of AV elements for staying, free oscillating gyratory sifters.

(3) elliptical oscillation

Swinging Applications!

Examples:

